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Wave motion lies at the heart of many disciplines in the physical sciences and engineering.

For example, problems and applications involving light, sound, heat, or fluid flow are all likely to

involve wave dynamics at some level. A particular class of problems is concerned with the propaga-

tion of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to

vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earth-

quake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave,

the dispersion relation provides a fundamental characterization of the elastodynamic properties of

the medium.

The first part of the dissertation examines the propagation of a large-amplitude elastic wave

in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities

on the dispersion relation. Considering a thin rod, where the thickness is small compared to the

wavelength, an exact, closed-form formulation is presented for the treatment of two types of non-

linearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived

relation is then verified by direct time-domain simulations, examining both instantaneous disper-

sion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation).

A high-order perturbation analysis is also conducted yielding an explicit analytical space-time so-

lution, which is shown to be spectrally accurate. The results establish a perfect match between

theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion

relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism

that unfolds as an arbitrary-profiled wave evolves in the medium.

In the second part of the dissertation, the analysis is extended to a continuous periodic

thin rod exhibiting multiple phases or embedded local resonators. The extended method, which
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is based on a standard transfer-matrix formulation augmented with a nonlinear enrichment at the

constitutive material level, yields an approximate band structure that is accurate to an amplitude

that is roughly one eighth of the unit cell length. This approach represents a new paradigm for

examining the balance between periodicity and nonlinearity in shaping the nature of wave motion.
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Chapter 1

Introduction

1.1 Elastic waves

There are many different types of waves in nature and wave motion has been an overlapping

theme throughout physics since the early days of Newton and Maxwell. Study of waves exists

in nearly all of the traditional branches of physics: mechanics, electromagnetism, thermofluids,

quantum mechanics, to name a few. Wave propagation in solid materials is a topic of interest

in mechanics with a number of engineering applications. The study of structures and materials

involving elastic wave phenomena includes, but not limited to, the fields of seismology, e.g. the

study of earthquakes and the propagation of elastic waves through the Earth, crack propagation

in rocks, ultrasonics, response to impact loads, and vibrational excitations in structures. For an

arbitrary transient load, the fundamental characteristics of the response can be predicted by elas-

todynamic analysis by considering only a small portion of the medium through which an excitation

will propagate. To motivate our discussion, consider the 1D linear wave equation

∂2u

∂t2
= c2∂

2u

∂x2
, (1.1)

and its general solution

u(x, t) = f(x± ct), (1.2)

which represents waves of displacement u propagating with velocity c in the positive and negative x

directions as a function of time t. The quasi-static velocity of a wave is determined by the physical
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properties of the medium through which it propagates. In the case of wave propagation in a one-

dimensional (1D) solid material, c =
√
Y/ρ, where Y is the modulus of elasticity or rigidity and ρ

is the density.

Equation (1.1) represent both longitudinal and transverse waves with the value of the elastic-

ity modulus being defined accordingly. In longitudinal waves, the particles of the medium vibrate

in the direction of the wave propagation such as primary waves in earthquakes. In transverse waves,

the particles of the medium vibrate perpendicular to the direction of the wave propagation, such

as shear waves in an earthquake or vibratory waves in a taut string. Only longitudinal waves can

propagate in liquids and gases, which are elastic with respect to volume but not with respect to

shape. Sound pressure waves are an example of this class of wave motion.

The harmonic elastic wave solution, Eq. (1.2), is characterized by the amplitude, phase,

frequency and wavelength. A special feature of elastic waves governed by Eq. (1.1) is that their

phase and group velocities are independent of the wave amplitude and geometry. In these waves,

the elongation of the medium is small and the displacement is related to the strain through an

infinitesimal strain gradient. Also, strain is a linear function of the stress, that is Hooke’s law. When

the elongation becomes relatively large, however, then the displacements exceed the infinitesimal

strain limits and the strain-displacement relationship can be defined by one of the Seth-Hill’s finite-

strain measures. In this case, there will be one or more additional terms in the Eq. (1.1) accounting

for the finite deformation [1]. Similarly, one may consider a highly elastic material such as rubber.

When stresses grow large, the deformation in this case exceeds what is predicted by Hooke’s law,

even with geometrically small deformations. In this case, Eq. (1.1) will again have additional terms,

now accounting for the material nonlinearity. Geometric and/or material nonlinearity causes the

phase and group velocities to be dependent on the wave amplitude.

Mathematically, the wave equation is classified under the category of hyperbolic equations in

the theory of linear partial differential equations (PDEs). Hyperbolic equations are among the most

challenging to solve since sharp changes in their solutions remain and can reflect off boundaries.

This is unlike, for example, the heat equation, where solutions are smooth as long as the initial
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conditions are smooth. This added complexity naturally reflects in the analytical or numerical

treatment needed to obtain a solution.

In this dissertation, nonlinear dispersive elastic waves in solids are studied in depth. Em-

phasis is placed on longitudinal waves. However, the main concepts and formulations may easily

be extended to transverse waves. A major part of this report is devoted to the notion of an

amplitude-dependent nonlinear dispersion relation in an elastic medium. Amplitude-dependent

waves are analyzed by the three classical categories of analysis: analytical and exact, analytical

and approximate, and numerical.

1.2 Dispersion in elastic media

In this section, we present a brief introduction to dispersion in a linear system, a periodic

rod, and a nonlinear system, a homogeneous rod. In the linear system, the effect of periodicity

is introduced by the Transfer Matrix (TM) method, an implicit way of calculating dispersion for

periodic media. In the nonlinear system, a nonlinear strain-displacement relationship, i.e., finite

deformation, alters Eq. (1.1) allowing us to derive the corresponding explicit dispersion relation in

each homogeneous medium forming the periodic unit cell.

1.2.1 Linear dispersion relation, e.g., from periodicity

Bloch’s theorem [2] provides the underlying mathematical framework for obtaining the elastic

band structure (i.e., dispersion curves) for a periodic material. There are several approaches for

applying the theorem to a unit cell modeled as a continuum. Here, we briefly describe the TM

method (for a background on the method and further details, see Refs. [3–5]).

We begin our dynamic analysis of a periodic material with the equation of motion stated in

Eq. (1.1). As mentioned earlier, we restrict ourselves to a 1D model, e.g., a thin rod, for which the

equation of motion is the same as Eq. (1.1). For simplicity, we assume that the cross-sectional area

of the rod is non-varying with x. We consider a homogeneous, linearly elastic 1D rod of infinite

extent (having no global boundaries at which waves may reflect), and apply a plane wave solution
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Figure 1.1: Continuous model of a one-dimensional two-phased phononic crystal viewed as a peri-
odic thin rod.

of the form

u(x, t) = Aei(κx−ωt), (1.3)

where A is the wave amplitude, κ is the wave number, ω is the temporal frequency of the traveling

wave, and i =
√
−1. Here, we make another assumption about the cross-sectional dimensions of

the rod, namely, that they are much smaller than the wavelengths of all waves considered in the

analysis. Substituting Eq. (1.3) into Eq. (1.1) provides the linear dispersion relation

Eκ2 = ρω2. (1.4)

This approach may also be applied to heterogeneous media provided the heterogeneity is

periodic. In this case, we refer to Eq. (1.3) as Bloch’s theorem [where A = A(x, κ)], and it suffices

to analyze only a single unit cell representing the unique segment that is repeated to generate

the periodic medium and to apply periodic boundary conditions to this segment. In Fig. 1.1, we

present a simple bi-material model of a 1D phononic crystal in the form of a layered periodic rod

(where the unit cell is enclosed in a red dashed box). The spatial lattice spacing of the 1D periodic

material is denoted by the constant a. The same analysis may also be applied to a unit cell with a

stepwise varying cross-sectional area, but this case will not be considered here.

For an arbitrary homogeneous layer j in the unit cell, the associated material properties,

which are constant, are denoted as E(j) and ρ(j). The longitudinal velocity in layer j is therefore

c(j) =
√
E(j)/ρ(j). The layer is bordered by layer j − 1 on the left and layer j + 1 on the right.

Denoting the thickness of an arbitrary layer by d(j), the cell length is a =
∑n

j=1 d
(j) for a unit cell

with n layers. Following this notation, the solution to Eq. (1.1) is formed from the superposition of
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forward (transmitted) and backward (reflected) traveling waves with a harmonic time dependence,

u(x, t) = [A
(j)
+ eiκ(j)x +A

(j)
− e−iκ(j)x]e−iωt, (1.5)

where κ(j) = ω/c(j) is the layer wave number. We can use Eq. (1.5) to form the TM and solve an

eigenvalue problem to get the structure band of the system. For details see Ref. [5]. To demonstrate

the effect of periodicity, we consider the same geometric features as the periodic bi-material rod in

Fig. 1.1 and the following ratio of material properties: c(2)/c(1) = 2 and ρ(2)/ρ(1) = 3. Furthermore,

we consider a bi-layered unit cell in which d(2) = d(1). The results are shown in Fig. 1.2 for a

phononic crystal of size a = 1.

1.2.2 Linear dispersion relation, e.g., from lateral inertia

The equation of motion for a 1D nonlinear homogeneous thin rod under uniaxial stress can

be derived by Hamilton’s Principle (Fig. 1.3). Hamilton’s Principle requires a functional of the

Lagrangian density L (which contains the medium’s elastic dynamic information) to reach its

minimum value, that is

δ

∫ t

t0

Ldt = 0. (1.6)
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E,ρ,ν
xr

Figure 1.3: Continuous model of a 1D homogeneous medium with infinite length.

The Lagrangian is formed by L = T − U . Here we do not account for external non-conservative

forces and moments. The symbols T and U denote the kinetic and elastic strain energy densities

of the system, respectively. Considering infinitesimal strain ε = ∂u ∂x, the density of the kinetic

energy of longitudinal motion is

T =
1

2
ρ(
∂u

∂t
)2 +

1

2
ρν2r2(

∂2u

∂xt
)2, (1.7)

and the elastic strain energy density is

U =
1

2
σε. (1.8)

For the stress-strain relation, we consider Hooke’s law, i.e., σ = Eε, where σ and ε are the uniaxial

stress and finite strain, respectively.

If we substitute the Lagrangian density into the Euler-Lagrange equation with displacement

u being a single function and time and position being the dual variables,

∂

∂x

∂L
∂ux

+
∂

∂t

∂L
∂ut
− ∂2

∂x∂t

∂L
∂uxt

= 0, (1.9)

Eq. (1.1) becomes

∂2u

∂t2
= c2∂

2u

∂x2 + ν2r2 ∂4u

∂ttxx
, (1.10)

where (.),x denotes a partial derivative with respect to position. By solving this equation we obtain

the exact dispersion relation,

ωli =
ω√

1 + ν2r2κ2
. (1.11)

where ω is the frequency based on infinitesimal strain,

ω(κ) = c|κ|. (1.12)
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Figure 1.4: Frequency dispersion curves for a 1D homogeneous elastic medium. The lateral inertia
dispersion relation is based on Eq. (1.11); the infinitesimal strain dispersion relation is based on
Eq. (4.30).

By taking the limit, limr→0 ωli, in Eq. (1.11), Eq. (1.12) is recovered which is the standard linear

dispersion relation for a 1D homogeneous elastic medium or a thin rod [6]. Dispersion Curves for

both infinitesimal and finite strains are shown in Fig. 1.4 .

1.2.3 Non-linear dispersion relation, e.g., from finite strain

Considering a thin rod (Fig. 1.3, when r → 0), we again use Hamilton’s Principle to derive

he equation of motion. As an example, we consider the Green-Lagrange finite-strain relation from

the Seth-Hill family of strains

ε =
∂u

∂x
+

1

2
(
∂u

∂x
)2, (1.13)

but upcoming derivations can extend to any other type of finite-strain measure. The density of the

kinetic energy of longitudinal motion is

T =
1

2
ρ(
∂u

∂t
)2, (1.14)

and the elastic strain energy density is

U =
1

2
E(
∂u

∂x
)2 +

1

2
E(
∂u

∂x
)3 +

1

8
E(
∂u

∂x
)4. (1.15)
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If we substitute the Lagrangian density into the Euler-Lagrange equation, Eq. (1.1) becomes

∂2u

∂t2
= c2∂

2u

∂x2 +
c2

2

∂

∂x
(3(

∂u

∂x
)2 + (

∂u

∂x
)3). (1.16)

Defining ū = u,x Eq. (1.16) becomes

∂2ū

∂t2
= c2∂

2ū

∂x2 +
c2

2

∂2

∂x2
(3ū2 + ū3), (1.17)

which is the equation of motion with respect to displacement gradient. Following the steps proposed

in Ref. [1] we get the exact dispersion relation,

ωfin(κ;B) =

√
2 + 3B|κ|+(Bκ)2

2
ω. (1.18)

By taking the limit, limB→0 ωfin(κ;B), in Eq. (1.18), Eq. (1.12) is recovered which is the standard

linear dispersion relation for a 1D homogeneous elastic medium or a thin rod [6]. Dispersion curves

for both infinitesimal and finite strains are shown in Fig. 1.5. Later, in Section 2.2, we derive the

exact dispersion relation considering both sources introduced in Sections 1.2.2 and 1.2.3. Also in

Section 4.4 combining both effects of periodicity and nonlinearity introduced in Sections 1.2.1 and

1.2.3, respectively, are discussed.
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Figure 1.5: Frequency dispersion curves for a 1D homogeneous elastic medium [1]. The finite-strain
dispersion relation is based on Eq. (1.18); the infinitesimal strain dispersion relation is based on
Eq. (4.30).
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1.3 Motivation

Aside from dissipation, the main factors that affect the propagation of elastic waves are

nonlinearity and dispersion. Nonlinearity introduces harmonic generation where the energy of the

primary mode transfers to other modes, representing sub or super harmonics of the primary mode.

This causes sharp overfalls that appear in the moving wave profile. Linear dispersive effects, such

as the presence of periodicity as discussed in Section 1.2.1, softens the wave profile due to the

difference in the phase velocity of the various harmonic components. Nonlinearity and/or linear

dispersive effects will cause a non-dispersive medium to become dispersive [1]. In this case, the

relation between the frequency and the wavenumber is no longer a linear relation.

Most classical studies deal with dispersive media by employing perturbation techniques to

explore the dispersion relation. Furthermore, often the effect of the dispersion is viewed as a linear

effect which is a separate from the effects of nonlinearity. On the other hand, only a handful of

theoretical studies on dispersive elastic media have been reported and still there is not a general

framework to study dispersion due to nonlinear effects, especially for strong nonlinearity.

The goal of this dissertation is to establish a general analysis framework for the investiga-

tion of the effects of nonlinearity on the dispersion relation for elastic waves, with a focus on 1D

problems. In addition to the development of exact solutions for several types of nonlinearity, per-

turbation and numerical analysis are also conducted to (1) verify the exact solutions, and (2) to gain

further understanding of the fundamental meaning of the concept of a nonlinear dispersion relation.

For example, how does the results of a direct numerical simulation, revealing nonlinear behavior in

space and time, correlate with the corresponding nonlinear dispersion relation, especially when the

nonlinearity is strong? How does the nonlinear dispersion relation implicitly capture information

about both short term (instant) effects, and medium term (pre-breaking) effects, such as harmonic

generation? The goal is also to extend the developed nonlinear formulation to periodic materials

such as such as phononic crystals and locally resonant elastic metamaterials [7]. Lastly, the disser-

tation aims to discuss the possibility of extending the ideas and theory developed to other types of
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nonlinear waves such as optical waves and shallow water waves.

1.4 Literature search

In the following subsections, a focused literature search is provided concerning dispersion in

homogeneous elastic media among the broader field of physics, linear and nonlinear elastic phononic

crystals, as well as metamaterials.

1.4.1 Dispersion in homogeneous media

Understanding of wave propagation is key to many branches of physics. In the study of waves,

the knowledge of the wavevector-frequency dispersion relation provides valuable information that is

often used to gain insights onto a range of properties [8]. While the vast majority of contemporary

studies of dispersion are based on linear governing equations, there are studies that address the

effects on the dispersion that arises from nonlinear quantities [9–12]. For an inherently nonlinear

medium, as the wave amplitude becomes sufficiently large, the linearization procedure breaks down

and nonlinear dispersion relations (NDR) are induced by interactions among waves. For example,

nonlinear dispersion caused by weak turbulences is an ubiquitous phenomenon observed in various

situations from fluid surface waves [13] to plasma waves [14]. In particular, the NDR for a thin

vibrating plate under the Föppl-von Kármán equation is derived and investigated experimentally

leading to corrections being added to the linear dispersion relation. [15–17]. Lee et al considered the

Majda-McLaughlin-Tabak model of turbulent dynamics, omitted the linear term in the governing

equations, and derived effective and approximate NDR to describe the dispersion arising merely

due to the nonlinear terms [18]. Aside from weak turbulent theory, there are other origins which

lead to NDR. Lie et al studied the weak nonlinearities of the wave equation under a nonlinear

constitutive relation in 1D waveguides using the spectral finite element method [19]. Ganesh and

Gonella analysed a 1D wave equation with weakly nonlinear stiffness in a periodic chain using a

perturbation method [20]. In a recent study, Abedinnasab and Hussein derived the exact NDR for a

thin rod accounting for both quadratic and cubic terms and omitting the Rayleigh-Love correction,
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representing the wave equation under finite deformation [1].

1.4.2 Dispersion in phononic crystals and elastic metamaterials

Phononic crystals (PCs) are elastic materials with prescribed phonon wave propagation prop-

erties. While the term “phonon” is formally used in the physical sciences to describe vibration

states in condensed matter at the atomic scale, in the present context, we use it to broadly de-

scribe elastic wave propagation modes. Like crystalline materials, a phononic material has local

intrinsic properties and is therefore mathematically treated as a medium that is spatially extended

to infinity. Compared to a homogeneous and geometrically uniform elastic continuum, a phononic

material exhibits rich and unique dynamical properties due to the presence of some form of non-

homogeneity and/or non-uniformity in either an ordered or disordered manner. In the ordered case,

phononic materials are constructed from a repeated array of identical unit cells which enables the

calculation of the elastic band structure for a given topological configuration. This direct exposure,

and access, to the inherent dynamical properties of phononic materials has vigorously chartered

a new direction in materials physics, at a multitude of scales, and has already begun to impact

numerous applications ranging from vibration control [21,22], through subwavelength sound focus-

ing [23, 24] and cloaking [25, 26], to reducing the thermal conductivity of semiconductors [27–29]

and stabilizing a wall-bounded flow [30]. A discussion of applications and references are provided in

Refs. [7,31,32], and recent special journal issues on the topic assemble some of the latest advances

in the field [33,34].

For a given choice of unit-cell geometry and/or type and distribution of constituent materials,

PCs can produce absolute band gaps due to Bragg scattering where acoustic/elastic waves are

forbidden to propagate [35–37]. However, in order to open band gaps in the low frequency range

of up to a few hundred kHz, the dimension of a periodic structure tends to be too large for a

wide range of practical applications. This limitation may be overcome by using locally resonant

elastic metamaterials (MMs), introduced by Liu et al. [38], in which band gaps may open up in

the subwavelength regime and thus do not require the unit cell size to be on the order as the
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wavelength. Within a band gap, for a PC or a MM, the wave energy is attenuated within only

a small number of repeated unit cells. In addition to the possibility of subwavelength band gaps,

MMs exhibit other unique physical properties that cannot be found in natural materials, such as

negative properties [38–43]. A recent article and discussion in Applied Mechanics Reviews provide

a broad review of PCs and MMs covering historical and recent developments as well as an outlook

on future research directions [7, 44,45].

The engineering of common structures such as rods, beams and plates with features, or

microstructures, that house local resonators allows for the emergence of metamaterial behavior

across the structure as a whole. This provides a promising avenue for vibration mitigation using

low-frequency bands gaps and effective properties. In two-dimensional plate-like structures, this

concept has been realized by embedding soft inclusions [46], erecting pillars [47–49], suspending

heavy inclusions within a lattice [50], among other configurations [51]. In 1D structures, among the

metamaterial configurations considered are three-phase rods [52], beams with resonating rings [53,

54], sandwich beams with internal mass-spring resonators [55], beams with side stubs [56, 57] and

beams with small masses suspended on a membrane [58]. The band-gap formation mechanism in

this class of 1D systems was studied analytically by Xiao et al. in the context of mass resonators

attached to strings [59], rods [60] and beams [61]. In the case of rods, multi-degree-of-freedom

resonators were considered to achieve a cluster of multiple subwavelength band gaps [60]. Liu and

Hussein, on their part, investigated the effects of the various types and properties of periodicity

on the frequency band structure considering flexural wave propagation in Euler and Timoshenko

beams [62]. The conditions for transition between the Bragg scattering and the local resonance

hybridization regimes have also been investigated in depth [62].

The majority of theoretical investigations of wave motion in elastic solids are based on linear

analysis, that is, linear constitutive laws and linear strain-displacement relationships are assumed

(see Refs. [63] and [64], and references therein). The incorporation of nonlinear effects, however,

gives rise to a broader range of physical phenomena including amplitude-dependent elastic wave

motion [65–69]. Capturing this property within the dispersion relation provides a general and
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fundamental description of the nonlinear wave propagation characteristics. Abedinnasab and Hus-

sein [1] derived exact dispersion relations for axial and flexural elastic wave motion in homogeneous

rods and beams, respectively, under finite strain. The effects of nonlinearity have also been studied

for other types of waves such as water waves [70, 71] and electrostatic and electromagnetic waves

in plasmas [72,73].

Finite-strain waves in elastic solids is a subset among the broader class of nonlinear waves.

From a mathematical perspective, a formal treatment of finite strain requires the incorporation of

a nonlinear strain tensor in setting up the governing equations of motion. Regardless of the type

of nonlinearity, a common analysis framework has been one in which the dispersion is viewed to

arise linearly, e.g., due to the presence of a microstructure or geometrical constraints, and that

such dispersion may be balanced with nonlinear effects to allow for the generation of nonlinear

traveling waves of fixed spatial profile such as shock waves and solitons [68,69]. In contrast to this

dispersion/non-linearity balancing framework where the focus is on finding these special types of

waves and characterizing the amplitude-dependence, or wave-number-dependence, of their speeds,

it has recently been shown that nonlinearity in itself may cause dispersion without the need for

a linear dispersive mechanism [1, 18]. This perspective provides a motivation to derive dispersion

relations that inherently embody the effects of the nonlinearities on the dispersion, i.e., amplitude-

dependent relations for general wave motion that encompass both the frequency (or phase velocity)

and the wave number.

Extending to periodic media, nonlinear PCs and MMs have received less attention due to the

additional difficulties in modeling and characterization. Needless to say, there are unique opportu-

nities associated with large motion in PCs and MMs, such as, for example, solitary wave tuning [74]

and amplitude-dependent band-gap engineering [75]. Nonlinear dispersion relations appear in var-

ious contexts, for example, electronic waves in metals and semiconductors [76] and electromagnetic

waves in PCs [77,78]. In the context of nonlinear phononic materials, there are several studies that

follow the premise of Bloch wave propagation analysis. These include investigations on systems

exhibiting material nonlinearity, analyzed using the method of multiple scales [79–81], perturbation
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analysis [75, 82], the harmonic balance method [83, 84], and the TM method in conjunction with

a perturbation technique [85]. The effects of nonlinearity on the dynamics of periodic materials

has also been explored in the context of atomic-scale models incorporating anharmonic potentials;

see, for example, a recent paper focusing on phonon transport [86]. Concerning finite-strain dis-

persion in a layered elastic medium, this was recently investigated by Andrianov et al. [78] via a

homogenization approach whereby the periodic unit cell was first homogenized as a linear medium

and subsequently a finite-strain dispersion relation was derived for the averaged medium. This

approach therefore does not retain the periodic character in the derived dispersion relation. On

the experimental track, numerous studies have been conducted on nonlinear wave phenomena par-

ticularly in periodic granular chains, e.g., [74, 87]. It is evident that the effects of nonlinearity in

phononic/granular materials could be utilized to enrich the design of devices in numerous engi-

neering applications, such as for shock mitigation [88], tunable wave filtering [75], focusing [89]

and rectification [90]. A recent study experimentally investigated vibrational waves in periodic

strings [91]. In a recent investigation, we have studied the effect of finite deformation in 1D lay-

ered PCs using exact dispersion analysis in the different homogeneous layers and the standard TM

method across the unit cell [92] and another study examining a 1D nonlinear elastic metamate-

rial [93].1

1.5 Thesis objectives

In this dissertation, nonlinear dispersive waves in solids are investigated. Nonlinear 1D

models of homogeneous and phononic media are derived and followed by the development of exact,

approximate, and numerical solutions. The main steps for accomplishing the desired goal are

outlined as follows:

• Develop a framework for the derivation of the exact dispersion relation in 1D elastic media,

considering any type of geometric or material nonlinearity.

1 These studies form the foundation of Chapters 4 and 5 respectively.
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• Derive an analytical spatial solution for nonlinear elastic waves in 1D homogeneous solids

using high-order perturbation theory.

• Investigate the intrinsic harmonic generation mechanism in elastic solid media and establish

a connection with the derived dispersion relation.

• Provide a formulation to allow the analysis to be extended to nonlinear 1D phononic crystals

to 1D locally resonant elastic metamaterials.

• Develop finite element, finite difference, and spectral method codes for simulating nonlinear

wave propagation in homogeneous and heterogeneous elastic solids.

• Investigate the possibility of expanding this framework into other types of nonlinear waves

such as optical waves and water waves.

1.6 Overview

This dissertation focuses on wave propagation in 1D nonlinear dispersive elastic medium. It

provides a rich collection of problems and the intent is to study the intrinsic dynamical properties of

nonlinear elastic media under various circumstances. Chapter 1 provides an introduction to elastic

wave propagation in general and an overview of a few example mechanisms that involve dispersion

and nonlinearity. A brief literature review is provided and the framework of this dissertation is

defined. Chapter 2 studies nonlinear dispersion relations for 1D homogeneous elastic media in the

presence of linear dispersive mechanism (lateral inertia) and nonlinear dispersive mechanism (finite

deformation). It focuses mainly on the connection between harmonic generation and dispersion.

This chapter is an adaptation from a paper in preparation [94, 95]. Chapter 3 studies expanded

nonlinear dispersion relations for 1D homogeneous elastic media derived by a higher order pertur-

bation method. Using dispersion information, an analytical spatial solution has been derived as

well. This chapter is also an adaptation from a paper in preparation [96]. Chapter 4 is a reprint

of a submitted work that investigates phononic crystals, the band gap structure, and balancing of
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dispersion due to nonlinearity and periodicity for 1D nonlinear phononic crystal. The preprint is

available in Ref. [92]. Chapter 5 is a reprint of a published work that investigates the band gap

structure for 1D nonlinear elastic metamaterials [93]. Finally, Chapter 6 presents an ongoing study

and draws an outline for future plans.
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Chapter 2

Unified theory of nonlinear dispersion and harmonic generation1

In this chapter, we report on an intriguing phenomenon concerning the connection between

nonlinear dispersion relation and the evolution of nonlinear elastic waves in a homogeneous thick

rod. Nonlinearities originating from two different forms of Seth-Hill finite-strain measures intro-

duce amplitude-dependent dispersion relations which are verified using a Fourier spectral method

followed by a wave number-frequency spectral (WFS) analysis. The evolution of large-amplitude

waves consists of profile steepening and wave radiation in the opposite direction of propagation.

This leads to the realization of harmonic generation which we demonstrate to correlate perfectly

with the derived dispersion relation.

2.1 Introduction

Understanding of wave propagation is key to many branches of physics. In the study of waves,

the knowledge of the wavevector-frequency dispersion relation provides valuable information that is

often used to gain insights into a range of dynamical properties of the medium [97]. While the vast

majority of contemporary studies of dispersion are based on linear governing equations, there are

studies that address the effects on the dispersion that arises from nonlinear quantities [13,17,98]. In

particular, nonlinear dispersion caused by weak turbulences is a ubiquitous phenomenon observed

in various fields from vibrating plates [15] and plasma oscillations [14] to shallow waters [99]. For

some of these systems, the predicted nonlinear dispersion relation (NDR) is compatible with results

1 The material in this chapter is drawn from Ref. [94], a paper in preparation.
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obtained from experiments [13, 16, 17] or from numerical simulations [14, 15, 18, 99, 100]. Although

there is an agreement between theory, numerical simulations, and experiments, there are also limi-

tations. In some of these cases, the compatibility is limited to only weak nonlinearities [13,15–17].

Aside from weak turbulent theory, there are other origins which lead to nonlinear dispersion. For

example, the NDR derived from the coupling of two water waves [101,102] or from dielectric medium

nonlinearity of surface waves in left-handed materials [11].

In this chapter, we consider a one-dimensional (1D) thick rod with both linear and non-

linear dispersive mechanisms. We first demonstrate the possibility of qualitative changes in the

dynamical behavior of an elastic medium purely due to nonlinear interactions, e.g., observation

of dispersive behavior in an otherwise non-dispersive elastic medium. Particularly, we answer the

important fundamental question of how for a nonlinear system, the nonlinear dispersion is con-

nected to the generation of harmonics in the medium? This differs fundamentally from previous

studies on weakly nonlinear models where the NDR is viewed as a single qualitative perturbation

to the linear dispersion relation [17, 18]. For 1D elastic media in particular, a NDR for a thin rod

under finite deformation is derived and verified numerically concerning the onset of dispersion [1].

In what follows, we present a theoretical framework to derive the NDR for 1D elastic waves in a

thick rod containing both linear and nonlinear dispersive terms. Although this framework can be

applied to PDEs nonlinearized due to different forms of nonlinearity sources, we limit our results

to the Green-Lagrange strain (GLS) and the Hencky strain (HS) which are considered to be geo-

metrical nonlinearities. The source of linear dispersive mechanism considered is lateral inertia. In

case of neglecting the lateral inertia, the model is refereed as a thin rod. We demonstrate that the

spectrum obtained by WFS analysis of the simulation data matches perfectly with the predicted

dispersion relations. We show that a balance between a linear and a nonlinear dispersive mech-

anisms provides an opportunity to characterize solitons which is different from the conventional

view, a balance between nonlinearity and dispersion [103,104]. We further show that the values of

WFS introduced by nonlinearities are strongly inductive of the harmonic generation, establishing

a complete map connecting the space-time solution, the harmonic generation, and the NDR of the
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system. Study of these waves and understanding the interaction between harmonic generation and

NDR is key and provides new insights to any field involving wave motion, in particular nonlinear

vibration analysis [105, 106], dislocation and crack dynamic analysis [107, 108], geophysical and

seismic motion analysis [109, 110], material characterization and nondestructive evaluation [111],

biomedical imaging [112], among others. Although in this chapter we discuss linearly dispersive

media due to lateral inertia, but in principle the proposed framework is applicable to periodic media

such as a phononic crystal [92], a nonlinear elastic metamaterial [93], or a 1D chain [20, 113], or

others.

2.2 Nonlinear dispersion relation

Let us consider an infinite 1D rod with radius r and constant material properties under

uniaxial stress σ(x, t) and longitudinal displacements u(x, t) at position x and time t. For such

a medium, the governing equation can be obtained from the Hamilton’s Principle δ
∫ t
t0
L∂t = 0.

In the absence of external non-conservative forces and moments, the elastic Lagrangian density

function, L = T − U , summarizes the dynamics of the system via the kinetic and elastic strain

energy densities, T = ρ
(
(∂tu)2 + ν2r2(∂2

txu)2
)
/2 and U = σε/2. Here ρ and ν are mass density

and Poisson’s ratio and uniaxial stress follows Hook’s law σ = Eε, where E is the elastic modulus.

The finite strain ε describes the exact complete GLS and HS measures by ε = ∂xu+ (∂xu)2/2 and

ε = ln(1 +∂xu), respectively. In these relations, ∂(.)u denotes the partial derivative of displacement

with respect to (.). Applying L on the Euler-Lagrange equation ∂x(∂∂xuL)+∂t(∂∂tuL) = 0, followed

by defining ū = ∂xu, result in the equation of motion with respect to displacement gradient in the

general form of

∂ttū− ∂xx(αū+ βN (ū) + γ∂ttū) = 0. (2.1)

We determine the constants and nonlinear function of Eq. (2.1) by α = β = c2 and N (ū) =

3ū2/2 + ū3/2 for the GLS measure, and α = 0, β = c2, and N (ū) = ln(1 + ū)/(1 + ū) for the HS
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measure. For both cases, γ = r2ν2 and he velocity of sound is constant in the medium as is given

by c =
√
E/ρ.

Assuming a thin rod, i.e. r = 0, Eq. (2.1) incorporates finite strain only in the wave equa-

tion and transforms the dynamics of the non-dispersive medium to a dispersive medium with a

self-steepening character in the course of time evolution. However this system evolves differently

depending on the type of finite strain measure introduced. Specifically, in the case of the GLS

measure, waves with smaller wavelengths catch up with larger ones, leading to self steepening in

the direction of propagation − hardening effect − and eventually forming a shock ∂xū = −∞, while,

in contrast, for the case of the HS measure, waves with larger wavelengths catch up with smaller

ones, leading to self steepening in the opposite direction of propagation − softening effect [114]−

and the formation of a shock ∂xū = ∞, as demonstrated in Fig. 2.1(a). Consider m(x, t) < 0

and M(x, t) > 0 to be the minimum and maximum value of ∂xū as a function of time. There

exist a finite bifurcation time τB when at least one point of the wave profile slope becomes vertical,

m→ −∞ and M →∞, and a shock forms at the leading edge in the GLS case and at the trailing

edge in the HS case. These effects are shown in the inset of Fig. 2.1(a) by the corresponding

characteristic lines. Analytically, one can determine the position and time of bifurcation by solving

the following set of equations for a known solution, ∂ūx(ū) = 0 (equivalent to |∂xū(x)| = ∞), and

∂ūūx(ū) = 0 necessary to ensure the uniqueness of ū(x).

To describe the dispersion in a convenient manner, it is appropriate to introduce a change of

variables. This is accomplished by the transformation ξ = κx− ωt, so that Eq. (2.1) becomes

ω2∂ξξū− κ2∂ξξ(αū+ βN (ū) + ω2γ∂ξξū) = 0, (2.2)

where κ and ω are the wave number and the frequency of the traveling wave. We solve this equation

by setting the integration constants equal to zero to ensure the boundedness of the travelling wave

solution at infinity for an initially bounded displacement field such as a sinusoidal displacement

field with amplitude B. Following this change of variables, this initial displacement field essentially
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Figure 2.1: (color). Profile snap shots for three different times and their corresponding harmonics.
(a) Profiles captured at t0 = 0 ms, t1 = .8 ms, and t2 = 1.5 ms. Inset shows the characteristic
lines of the corresponding wave. (b) Normalized distribution of the harmonics generated through
time. (c) Wavenumber-frequency spectrum at t2 represented by the logarithmic spectrum S2 for
the considered value of κe = 4.5.

corresponds to satisfying ū(0) = Bκ at ξ = 0, which if we apply to the solution of Eq. (2.2), we

obtain the exact NDR respectively under GLS and HS measures as:

ωGLS = cκ
√

(2 + 3Bκ+B2κ2)/(2 + 2γκ2), (2.3)

and

ωHS = cκ
√

ln(1 +Bκ)/(Bκ(1 +Bκ)(1 + γκ2)). (2.4)

Indeed, the method we employed to derive these NDRs relies on the initial condition for Eq. (2.1).

One can recover the linear dispersion relation, ωinf = cκ, by applying limB→0,γ→0 ωGLS on Eq. (2.3)

and limB→0,γ→0 ωHS on the Taylor series expansion of Eq. (2.4) [1, 11,115].
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2.3 Computational setup

In the following, we solve Eq. (2.1) using a spectral method for the spatial variable in conjunc-

tion with an efficient explicit time stepping method, and perform WFS analysis on the space-time

solution to compare the corresponding wave number-frequency spectrum with the analytically de-

rived NDRs in the Eqs. (2.3) and (2.4) [115]. To briefly summarize the computational setup, we

prescribe a wave packet in a periodic domain. The dynamics of this packet is fully characterized

by its amplitude B (arbitrary normalized) and excitation wave number κe. In principle, any wave

packet with amplitude κeB, the condition used to derive the NDRs, can be used in these simula-

tions. The space-time domain is defined by −x∗ < x ≤ x∗ (long enough to avoid any reflections

from boundaries) with a grid spacing of h = 1cm, and 0 ≤ t ≤ t∗ (t∗ set at just before the breaking

point of the wave profile) with a constant time stepping of ∆t = 1µs. The material considered is

aluminum which has properties, ρ = 2700kg/m3, ν = .33 and E = 70GPa. We display the results

of the WFS analysis by the logarithmic value of the spectrum S(κ, ω) =
∑

κe
ln|s|, scaled in the

unit interval spanning the normalized axes of Bκ and ω/c.
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Figure 2.2: (color). Balance of linear and nonlinear dispersions. (a) Dispersive effects of increas-
ing lateral inertia in the GLS model (Eq. (2.3)). Wave propagation and its corresponding WFS
analyses. (b-e) The WFS analysis of the finite strain space-time solution represented by the log-
arithmic spectrum S for the mentioned κe values on the figure. Corresponding dispersion curves
and harmonic generation paths are overlaid from Eqs. (2.3) and (2.5).
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2.4 Observations

Any excitation, harmonic or in the form of a localized pulse, consists of a primary mode.

Study of wave characteristics and their evolution in time, due to pure nonlinearities, reveals other

modes in the spectrum get excited. To analyze further, first we choose a single mode harmonic

excitation, ū(x, t) = Bκe(1 + cos(κe(x− ct))/2 characterized by B = .1 and κe = 4.5 in a thin rod

r = 0, simulate and present the results in Fig. 2.1. This wave packet evolves with time and as

long as wave breaking is not reached, the nonlinear field obeys certain characteristics as dictated

by the Eq. (2.1) (Fig. 2.1(a)). Performing Fourier analysis on the wave packet on the onset of

excitation and two further times show the transition of energy, K, from the primary mode to the

higher modes as shown in Fig. 2.1(b). The WFS analysis results corresponding to this excitation

is also presented in Fig. 2.1(c). Both the infinitesimal dispersion relation and NDR are overlaid

on the top of the spectrum in order to compare with the computational results. Differentiating

between characterization parameters by keeping B constant and varying κe = 4.5 in the initial

excitation pulse, we establish a connection between the harmonic generation mechanism and the

NDR. In this case we evaluate Eqs. (2.3) and (2.4) at κe to take the form

ωGLSe = cκ
√

(2 + 3Bκe +B2κe2)/(2 + 2γκ2), (2.5)

and

ωHSe =cκ
√

ln(1 +Bκe)/(Bκe(1 +Bκe)(1 + γκ2)). (2.6)

These relations predict the trajectories that the harmonic generation occurs along as shown with

dashed lines. The brightened areas along the dashed lines confirms the accuracy of the theory in

capturing the dynamical behavior of the system at the excited wave number κe. Intersections of

this line with the κe values are exactly located on the NDRs. The secondary modes which align

perfectly with the excited parts of the spectrum can be predicted by plugging integer multipliers

of κe in κ of Eqs. (2.5) and (2.6).

Now we consider a thick rod under the GLS measure and propagate the same profile char-
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acterized by B = .05 and κe = 4.5 with various thicknesses. As it is shown in Fig. 2.2, our theory

can predict the simulations in the presence of linear and nonlinear dispersive mechanisms. Figure

2.2(d) in particular, shows a balance between the linear and nonlinear dispersions, for which, the

red solid curve becomes a straight line, and wave profile propagate without any noticeable change

in its shape acting as a soliton.

Next, we expand this concept and verify the NDR by superposing various excitations and

their harmonic generation paths. But first we study the system at the infinitesimal limit. We simu-

late a localized pulse defined by ū(x, t) = Bκe(1+sech(κe(x−ct))/2 over a long time domain with a

relatively small amplitude of B = .0005 and κe = 6. This condition generates a non-dispersive wave

in an almost non-dispersive medium. The linear dispersion relation, ωinf = cκ, can be recovered
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Figure 2.3: (color). Wave propagation and its corresponding WFS analyses (thin GLS, thin HS,
and thick GLS models in first, second, and third rows, respectively). (a) Finite strain space-time
solution. Here we have used B = 0.025 and κe = 6 to form the initial wave profile. Time and space
units are [ms] and [m], respectively. (b) The WFS analysis of the finite strain space-time solution
represented by the logarithmic spectrum S for the mentioned value of κes on the figure. Dashed
curves corresponding to the harmonic generation paths are overlaid from Eqs. (2.5) and (2.6). (e)
Superposition of WFS analyses by the logarithmic spectrum S for thirty distinct waves defined by
the initial conditions of B = 0.025 and κe = 1 : 30. Also, corresponding dispersion curves from
Eqs. (2.3) and (2.4) are overlaid.
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from the NDRs by setting B → 0 and r → 0 [115].

In Fig. 2.3(a), we show the space-time solution of the same profile with κe = 6 and a

B = .025. The initial wave packet propagates along the positive direction which is in sync with the

initial velocity condition and at some point, a trailing wave radiates in the opposite direction. In

addition, wave contour images are mapped to the top surface of the mesh confirming the gradual

formation of shocks in agreement with the behavior explained in Fig. 2.1(a), at the leading and

trailing edges of the wave packet for the GLS and HS measures, respectively. In Fig. 2.3(b), WFS

results for a few distinct κe values are superposed. The path for the smallest κe corresponds to the

space-time solution presented in Fig. 2.3(a). Finally, in Fig. 2.3(c), a superposition of the main

modes for thirty distinct initial wave packets calculated from WFS analysis is presented. Initial

wave packets share the same amplitude but different excitation wave numbers ranging from κe = 1

to κe = 30, with increments of 1. As a result, we see a perfect agreement between the numerically

calculated wave number-frequency spectrum and the analytically predicted NDRs (Eqs. (2.3) and

(2.4)). These NDRs show that the nonlinearity by itself causes wave dispersion, i.e., without the

need for a linear dispersive mechanism. And most importantly, it shows that Eqs. (2.5) and (2.6)

perfectly predict the harmonic generation lines.

2.5 Conclusions

In summary, we show here that setting the traveling wave phase condition to zero allows

us to derive the relation for fully nonlinear dispersion of a traveling wave in an elastic medium

and uncover fundamental nonlinear dynamical behaviors without directly solving the governing

equations. We illustrate how the presented theory predicts the connection between the NDR and

harmonic generation corresponding to purely nonlinear wave evolution and how it elucidates the

harmonic generation mechanism within both linearly non-dispersive and linearly dispersive media.

Our numerical approach of WFS analysis provides a direct confirmation of the theory.
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Spatial evolution of nonlinear elastic waves in a 1D thin rod by high-order

perturbation theory1

In this chapter, we study expanded nonlinear dispersion relations for 1D homogeneous elastic

media derived by the method of strained parameters. Neglecting any linear dispersive mechanism

in the system, we focus on nonlinear dispersive mechanism, in particular, geometric nonlinearity in

the form of finite deformation. Using dispersion information derived for these systems, an analytical

spatial solution has been derived for each case.

3.1 Introduction

Nonlinear phenomena that appear in many areas of scientific fields such as optics, solid

physics, plasma physics and fluid dynamics can be modeled by partial differential equations (PDEs).

A broad class of analytical and numerical solution methods are used to handle these problems.

However, the majority of these methods are suitable for linear and weakly nonlinear problems. In

recent years, searching for traveling waves and soliton solutions of nonlinear systems have been

pursued with some solid achievements [65,97,106,116].

This chapter is devoted to the analysis of a one-dimensional elastic medium under finite

deformation, in particular as modeled by the Green-Lagrange strain (GLS) and Hencky strain (HS)

measures. The aim from this procedure is to obtain an approximation of the nonlinear dispersion

relation leading to an analytical expression of a space-time solution.

1 Most of the material in this chapter is taken from Ref. [96], a paper in preparation.
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3.2 Expanded nonlinear dispersion relation

We consider a 1D elastic medium, with constant material properties and infinite length in

both directions, admitting uniaxial stress σ(x, t) and longitudinal displacements u(x, t) at position

x and time t. For such a medium, the governing equation can be obtained from the Hamilton’s

Principle δ
∫ t
t0
L∂t = 0. In the absence of external non-conservative forces and moments, the elastic

Lagrangian density function, L = T − U , summarizes the dynamics of the system via the kinetic

and elastic strain energy densities, respectively,

T = ρ(∂tu)2/2, (3.1)

and

U = σε/2, (3.2)

where ρ is mass density and uniaxial stress follows Hook’s law σ = Eε, with E as the elastic modulus.

The finite strain ε describes the exact complete GLS and HS measures by ε = ∂xu+ (∂xu)2/2 and

ε = ln(1 + ∂xu), respectively. Applying L on the Euler-Lagrange equation

∂x(∂∂xuL) + ∂t(∂∂tuL) = 0, (3.3)

followed by defining ū = ∂xu, result in the equation of motion with respect to displacement gradient

in the general form of

∂ttū− ∂xx(αū+ βN (ū)) = 0. (3.4)

We determine the constants and nonlinear function of Eq. (3.4) by α = β = c2 and N (ū) =

3ū2/2 + ū3/2 for the GLS measure, and α = 0, β = c2, and N (ū) = ln(1 + ū)/(1 + ū) for the HS

measure. The velocity of sound is constant in the medium as is given by c =
√
E/ρ.

Usually, the first effort in finding the nonlinear dispersion relation associated with a wave

equation is through perturbation analyses. In the next two subsections we present a derivation of

the extended nonlinear dispersion relation based on GLS and HS measures.
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3.2.1 Expanded nonlinear dispersion relation: Green-Lagrange strain

Restating Eq. (3.4) with GLS constants gives

ūtt = c2ūxx + (
3

2
c2ū2 +

1

2
c2ū3)xx. (3.5)

We aim to find the next approximation to the linear periodic wave train using the method of

strained parameters assuming amplitude B is small [117]. The initial condition, ū(B; 0) = κB,

suggests an expansion of the form

ω(κ;B) =

N−1∑
n=0

Bnωn(κ) +O(BN ), (3.6)

ū(ζ;B) =

N∑
n=1

Bnūn(ζ) +O(BN+1), (3.7)

where

ζ = κx− ωt. (3.8)

Substituting this expansion into Eq. (3.5) and equating coefficients of like powers of B, for the first

order we obtain

Order B:

(ω0
2 − c2κ2)ū1,ζζ = 0,

ω0 = cκ, (3.9)

which is the infinitesimal dispersion relation. For the second order we have

Order B2 :

(ω0
2 − c2κ2)ū2,ζζ = κ2c2(3/2ū2

1),ζζ + 2ω0ω1ū1,ζζ ,

0 = κ2c23/2ū2
1 + 2ω0ω1ū1 + s.t. , (3.10)

and after removing secular terms and substituting ū1(0) = κ, we get

ω1 =
3cκ2

4
. (3.11)
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Now we use the results from the first two orders of frequency and form the third order

equations as

Order B3 :

(ω0
2 − c2κ2)ū3,ζζ = κ2c2(3ū1ū2 + 1/2ū3

1),ζζ + 2ω0ω1ū2,ζζ + (2ω0ω2 + ω1
2)ū1,ζζ ,

0 = κ2c2(3ū1ū2 + 1/2ū3
1) + 2ω0ω1ū2 + (2ω0ω2 + ω1

2)ū1 + s.t. , (3.12)

which upon substitution of ū2(0) = 0, gives

ω2 = −cκ
3

32
. (3.13)

We can continue the same procedure for higher orders to get the corresponding terms of the fre-

quency.

Order B4 :

(ω0
2 − c2κ2)ū4,ζζ = κ2c2(3ū1ū3 + 3/2ū2

2 + 3/2ū2
1ū2),ζζ

+2ω0ω2ū3,ζζ + (2ω0ω2 + ω1
2)ū2,ζζ + (2ω0ω3 + 2ω1ω2)ū1,ζζ ,

0 = κ2c2(3ū1ū3 + 3/2ū2
2 + 3/2ū2

1ū2)

+2ω0ω2ū3 + (2ω0ω2 + ω1
2)ū2 + (2ω0ω3 + 2ω1ω2)ū1 + s.t. . (3.14)

Again after removing secular terms and substituting ū3(0) = 0, we get

ω3 =
3cκ4

128
. (3.15)

Order B5 :

(ω0
2 − c2κ2)ū5,ζζ = κ2c2(3ū1ū4 + 3ū2ū3 + 3/2ū2

1ū3 + 3/2ū2
2ū1),ζζ

+2ω0ω2ū4,ζζ + (2ω0ω2 + ω1
2)ū3,ζζ + (2ω0ω3 + 2ω1ω2)ū2,ζζ + (2ω0ω4 + 2ω1ω3)ū1,ζζ ,

0 = κ2c2(3ū1ū4 + 3ū2ū3 + 3/2ū2
1ū3 + 3/2ū2

2ū1) + 2ω0ω2ū4

+(2ω0ω2 + ω1
2)ū3 + (2ω0ω3 + 2ω1ω2)ū2 + (2ω0ω4 + 2ω1ω3)ū1 + s.t. . (3.16)

By substitution of ū4(0) = 0 we get

ω4 = −37cκ5

2048
. (3.17)
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Therefore from Eq. (3.6), the frequency becomes

ω(κ;B) = cκ+
3cκ2

4
B − cκ3

32
B2 +

3cκ4

128
B3 − 37cκ5

2048
B4 + . . . , (3.18)

which for small B is equivalent to Taylor expansion of

ω(κ;B) =

√
2 + 3Bκ+ (Bκ)2

2
cκ. (3.19)

One can summarize all of the equations solved above into one general equation of order Bn as

Order Bn :

(ω0
2 − c2κ2)ūn,ζζ = (3/2

n−1∑
i=0

ūiūn−i + 1/2

n∑
i=1

n∑
j=1

ūiūj ūn−(i+j)),ζζ

+

n−2∑
i=1

ωi
2ūn−2i,ζζ + 2

n−2∑
i=0

n−1∑
j=i+1

ωiωj ūn−(i+j),ζζ . (3.20)

3.2.2 Expanded nonlinear dispersion relation: Hencky strain

The equation of motion for Hencky strain with respect to displacement gradient is

ūtt = c2(
ln(1 + ū)

1 + ū
)xx (3.21)

which if we expand based on power series it becomes

ūtt = c2(ū− 3ū2

2
+

11ū3

6
− 25ū4

12
+

137ū5

60
+O(B6))xx, (3.22)

where we assume amplitude B is small. Substituting Eqs. (3.6) and (3.7) into Eq. (3.22) and

equating coefficients of like powers of B, we obtain

Order B:

(ω0
2 − c2κ2)ū1,ζζ = 0,

ω0 = cκ. (3.23)

Order B2 :

(ω0
2 − c2κ2)ū2,ζζ = κ2c2(−3/2ū2

1),ζζ + 2ω0ω1ū1,ζζ ,

0 = −3/2κ2c2ū2
1 + 2ω0ω1ū1 + s.t. . (3.24)
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After removing secular terms and substituting ū1(0) = κ, we get

ω1 = −3cκ2

4
. (3.25)

Order B3 :

(ω0
2 − c2κ2)ū3,ζζ = κ2c2(−3ū1ū2 + 11/6ū3

1),ζζ + 2ω0ω1ū2,ζζ + (2ω0ω2 + ω1
2)ū1,ζζ ,

0 = κ2c2(−3ū1ū2 + 11/6ū3
1) + 2ω0ω1ū2 + (2ω0ω2 + ω1

2)ū1 + s.t. . (3.26)

By substitution of ū2(0) = 0, we get

ω2 =
61cκ3

96
. (3.27)

Order B4 :

(ω0
2 − c2κ2)ū4,ζζ = κ2c2(−3ū1ū3 − 3/2ū2

2 + 11/2ū2
1ū2 − 25/12ū4

1),ζζ

+2ω0ω1ū3,ζζ + (2ω0ω2 + ω1
2)ū2,ζζ + (2ω0ω3 + 2ω1ω2)ū1,ζζ ,

0 = κ2c2(−3ū1ū3 − 3/2ū2
2 + 11/2ū2

1ū2 − 25/12ū4
1)

+2ω0ω1ū3 + (2ω0ω2 + ω1
2)ū2 + (2ω0ω3 + 2ω1ω2)ū1 + s.t. . (3.28)

Again after removing secular terms and substituting ū3(0) = 0, we get

ω3 = −217cκ4

384
. (3.29)

Order B5 :

(ω0
2 − c2κ2)ū5,ζζ = κ2c2(−3ū1ū4 − 3ū2ū3 + 11/2ū2

1ū3 + 11/2ū2
2ū1 + 411/180ū5

1 − 25/3ū3
1ū2),ζζ

+2ω0ω1ū4,ζζ + (2ω0ω2 + ω1
2)ū3,ζζ + (2ω0ω3 + 2ω1ω2)ū2,ζζ + (2ω0ω4 + 2ω1ω3)ū1,ζζ ,

0 = κ2c2(−3ū1ū4 − 3ū2ū3 + 11/2ū2
1ū3 + 11/2ū2

2ū1 + 411/180ū5
1 − 25/3ū3

1ū2)

+(2ω0ω1 + ω1
2)ū3 + (2ω0ω3 + 2ω1ω2)ū2 + (2ω0ω4 + 2ω1ω3)ū1 + s.t. .(3.30)

By substitution of ū4(0) = 0 we get

ω4 =
47551cκ5

92
. (3.31)
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Therefore from Eq. (3.6), the frequency becomes

ω(κ;B) = cκ− 3cκ2

4
B +

61cκ3

96
B2 − 217cκ4

384
B3 +

47551cκ5

92160
B4 + . . . , (3.32)

which for small B is equivalent to Taylor expansion of

ω(κ;B) =

√
ln(1 +Bκ)

Bκ(1 +Bκ)
cκ. (3.33)

One can summarize all of the equations solved above into one general equation of order Bn

as

Order Bn :

(ω0
2 − c2κ2)ūn,ζζ = (−3/2!

n−1∑
i=0

ūiūn−i + 11/3!
n∑
i=1

n∑
j=1

ūiūj ūn−(i+j)),ζζ

− 25/4!
n∑
i=1

n∑
j=1

n∑
k=1

ūiūj ūkūn−(i+j+k)),ζζ + 137/5!
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

ūiūj ūkūlūn−(i+j+k+l)),ζζ

+
n−2∑
i=1

ωi
2ūn−2i,ζζ + 2

n−2∑
i=0

n−1∑
j=i+1

ωiωj ūn−(i+j),ζζ . (3.34)

Recalling the equation of motion for Hencky strain from chapter 2, we have

ūtt = c2(
ln(1 + ū)

1 + ū
)xx. (3.35)

In order to apply the method of strained parameters, the logarithmic term should be expanded as

a power series

ūtt = c2(ū− 3ū2

2
+

11ū3

6
− 25ū4

12
+

137ū5

60
+O(ū6))xx. (3.36)

A comparison of exact and approximation dispersion relations are presented in Fig. 3.1.

As expected, the correlation between these relations improves by increasing the order of terms

considered in this perturbation analysis. In contrast, it gets worse for increasing the amplitude

value.

To derive the expanded dispersion relation for a single mode harmonic excitation, one might

use the same steps explained above, with the difference of introducing κe instead of κ in the initial

conditions and get
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Figure 3.1: Frequency dispersion curves for a 1D homogeneous medium. (a-c) Green-Lagrange
strain. (d-f) Hencky strain. The finite-strain dispersion relations are based on Eqs. (3.19) and
(3.33). For comparison the first five orders from Eqs. (3.18) and (3.32) are overlaid.

ω(κ, κe;B) = cκ+
3cκ

4
Bκe −

cκ

32
B2κ2

e +
3cκ

128
B3κ3

e −
37cκ

2048
B4κ4

e + . . . , (3.37)

and

ω(κ, κe;B) = cκ− 3cκ

4
Bκe +

61cκ

96
B2κ2

e −
217cκ

384
B3κ3

e +
47551cκ

92160
B4κ4

e + . . . , (3.38)

which are direct expansions of Eqs. (2.5) and (2.6) in the case of thin rod.

The benefit of having an exact nonlinear dispersion relation for our systems is that we can

characterize the accuracy limitations of the perturbation method for capturing the dispersion in

these systems. It is well known that perturbation method breaks apart at large amplitudes and
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Figure 3.2: Limitation of perturbation theory in capturing dispersion. (a-b) Convergence of ex-
panded dispersion relations (Eqs. (3.18) and (3.32)) to exact dispersion relations (Eqs. (3.19) and
(3.33)) for Green Lagrange and Hencky strain, respectively. (c-d) An example of divergence for
large values of η.

wave numbers. Defining a new parameter η = Bκ, we combine the effect of both amplitude

and wavenumber. As demonstrated in Fig. 3.2 for small values of this characterization number,

convergence of the expanded dispersion relation to the exact dispersion relation is assured, while if

we increase this value, perturbation theory falls apart and the expanded dispersion relation diverge

from the exact one. Defining η∗, the limiting value of perturbation theory beyond which divergence

happens, we find η∗5 = 1.28 and η∗5 = 1.08 for GLS and HS in the fifth order, respectively.

3.3 Space-time solution

So far we have shown how we can find the nonlinear dispersion relation for a thin elastic rod

through a perturbation method. Now, we use our derived expanded NDR, Eq. (3.18), to solve Eq.

(3.5) and obtain an analytical space-time solution. Recall that for longitudinal waves in a thin rod,

the governing equation is of the classical form of Eq. (1.1). Consider now a thin rod of infinite
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extent, ∞ < x <∞. Let the initial longitudinal displacement and velocity be prescribed along the

entire rod by u(x, 0) = f(x) and ut(x, 0) = g(x). The d’Alembert’s solution to the homogeneous

wave equation subject to general Cauchy initial conditions reads

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct
g(s)ds. (3.39)

If the wave equation becomes inhomogeneous with a forcing term of q(x, t), the full solution of

d’Alembert reads

u(x, t) =
1

2

[
f(x− ct) + f(x+ ct)

]
+

1

2c

∫ x+ct

x−ct
g(s)ds+

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
q(s, τ)dsdτ. (3.40)

3.3.1 Space-time solution: Green-Lagrange strain

In what follows we consider Eq. (3.5) and assume that it has a solution of the form Eq. (3.7).

Assuming that ū(x, t) is an analytic function, the first order expansion can be represented by

B :



ū1,tt − v2ū1,xx = 0

ū1(x, 0) = Bκe(1 + sech(κx))/2

ū1,t(x, 0) = Bκe
2v sech(κx) tanh(κx)/2

, (3.41)

which can be solved using Eq. (3.39) to find

ū1(x, t) = Bκe(1 + sech(κ(vt− x)))/2. (3.42)

Setting up the next order we have

B2 :



ū2,tt − v2ū2,xx = 3v2(ū1ū1,x)x

ū2(x, 0) = 0

ū2,t(x, 0) = 0

, (3.43)

which can be solved using Eq. (3.40) to find

ū2(x, t) =
3B2κ2

e

32

(
sech(κe(x+ vt))(2 + sech(κe(x+ vt)))+

sech(κe(x− vt))
(
− 2− sech(κe(x− vt))+

4vtκe(1 + sech(κe(x− vt))) tanh(κe(x− vt))
))
.

(3.44)
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Using Eq. (3.18), one can find v = c and v = c(1 + 3Bκe/4) in Eqs. (3.42) and (3.44),

respectively.

3.3.2 Space-time solution: Hencky strain

Similar to the previous subsection, we consider Eq. (3.22) and assume that it has a solution

of the form Eq. (3.7). The first order expansion can be represented by

B :



ū1,tt − v2ū1,xx = 0

ū1(x, 0) = Bκe(1 + sech(κx))/2

ū1,t(x, 0) = Bκe
2v sech(κx) tanh(κx)/2

, (3.45)

with the solution of

ū1(x, t) = Bκe(1 + sech(κ(vt− x)))/2. (3.46)

For the next order we have

B2 :



ū2,tt − v2ū2,xx = −3v2(ū1ū1,x)x

ū2(x, 0) = 0

ū2,t(x, 0) = 0

, (3.47)

which can be solved to find

ū2(x, t) =− 3B2κ2
e

32

(
sech(κe(x+ vt))(2 + sech(κe(x+ vt)))+

sech(κe(x− vt))
(
− 2− sech(κe(x− vt))+

4vtκe(1 + sech(κe(x− vt))) tanh(κe(x− vt))
))
.

(3.48)

Also, v = c and v = c(1 + 3Bκe/4) in Eqs. (3.46) and (3.48), respectively.

Knowing ū1 and ū2 in both GLS and HS measures, we can plug them back in Eq. (3.7) to

obtain the second order solution for the system. These solutions has been verified by obtaining the

wavenumber-frequency spectrum from the corresponding spatiotemporal results.
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Chapter 4

Finite-strain Bloch wave propagation by the transfer matrix method with

nonlinear enrichment1

The introduction of nonlinearity alters the dispersion of elastic waves in solid media. In

this chapter, we present an analytical formulation for the treatment of finite-strain Bloch waves in

one-dimensional phononic crystals consisting of layers with alternating material properties. Con-

sidering longitudinal waves and ignoring lateral effects, the exact dispersion relation in each ho-

mogeneous layer is first obtained and subsequently used within the transfer matrix method to

derive an approximate nonlinear dispersion relation for the overall periodic medium. The result is

an amplitude-dependent elastic band structure that upon verification by numerical simulations is

valid up to an amplitude-to-unit-cell length ratio of 1/8. The derived dispersion relation allows us

to elucidate the interplay between the dispersion stiffening and softening effects that emerge due to

the nonlinearity and the periodicity, respectively. For example, for a wave amplitude on the order

of one eighth of the unit-cell size in a demonstrative structure, the two effects are practically in

balance for wavelengths as small as roughly three times the unit-cell size.

4.1 Introduction

4.1.1 Phononic materials

Phononic materials are elastic materials with prescribed phonon wave propagation properties.

While the term “phonon” is formally used in the physical sciences to describe vibration states

1 This chapter is drawn from Ref. [92] and has been adapted to suit the style and the notation of the dissertation.
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in condensed matter at the atomic scale, in the present context, we use it to broadly describe

elastic wave propagation modes. Like crystalline materials, a phononic material has local intrinsic

properties and is therefore mathematically treated as a medium that is spatially extended to infinity.

Compared to a homogeneous and geometrically uniform elastic continuum, a phononic material

exhibits rich and unique dynamical properties due to the presence of some form of non-homogeneity

and/or non-uniformity in either an ordered or disordered manner. In the ordered case, phononic

materials are constructed from a repeated array of identical unit cells which enables the calculation

of the elastic band structure for a given topological configuration. This direct exposure, and

access, to the inherent dynamical properties of phononic materials has vigorously chartered a new

direction in materials physics, at a multitude of scales, and has already begun to impact numerous

applications ranging from vibration control [21,22], through subwavelength sound focusing [23,24]

and cloaking [25,26], to reducing the thermal conductivity of semiconductors [27–29] and stabilizing

a wall-bounded fluid flow [30]. A discussion of applications and references are provided in recent

review articles [7, 31,118] and books [32,119,120], and special journal issues on the topic assemble

some of the latest advances in the field [33,34,121–125].

4.1.2 Elastic wave dispersion in the presence of nonlinearity

The majority of theoretical investigations of wave motion in elastic solids are based on linear

analysis, that is, linear constitutive laws and linear strain-displacement relationships are assumed

(see Refs. [63] and [64], and references therein). The incorporation of nonlinear effects, however,

gives rise to a broader range of physical phenomena including amplitude-dependent elastic wave

motion [65–69]. The effects of nonlinearity have also been studied for other types of waves such as

water waves [70,71] and electrostatic and electromagnetic waves in plasmas [72,73].

Finite-strain waves in elastic solids is a subset among the broader class of nonlinear waves.

From a mathematical perspective, a formal treatment of finite strain requires the incorporation of

a nonlinear strain tensor in setting up the governing equations of motion. Regardless of the type

of nonlinearity, a common analysis framework has been one in which the dispersion is viewed to
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arise linearly, e.g., due to the presence of a microstructure or geometrical constraints, and that

such dispersion may be balanced with nonlinear effects to allow for the generation of nonlinear

traveling waves of fixed spatial profile such as shock waves and solitons [68,69]. In contrast to this

dispersion/non-linearity balancing framework where the focus is on finding these special types of

waves and characterizing the amplitude-dependence, or wave-number-dependence, of their speeds,

it has recently been shown that nonlinearity in itself may cause dispersion without the need for

a linear dispersive mechanism [1, 18]. This perspective provides a motivation to derive dispersion

relations that inherently embody the effects of the nonlinearities on the dispersion, i.e., amplitude-

dependent relations for general wave motion that encompass both the speed (or frequency) and the

wave number.

Extending to periodic media, nonlinear dispersion relations appear in various contexts, for

example, electronic waves in metals and semiconductors [76] and electromagnetic waves in pho-

tonic crystals [77,78]. In the context of nonlinear phononic materials, there are several studies that

follow the premise of Bloch wave propagation analysis. These include investigations on systems

exhibiting material nonlinearity, analyzed using the method of multiple scales [79–81], perturba-

tion analysis [75,82,113,126], the harmonic balance method [83,84], and the transfer matrix (TM)

method in conjunction with a perturbation technique [85]. The effects of nonlinearity on the

dynamics of periodic materials has also been explored in the context of atomic-scale models incor-

porating anharmonic potentials; see, for example, a recent paper focusing on phonon transport [86].

Concerning finite-strain dispersion in a layered elastic medium, this was recently investigated by

Andrianov et al. [78] via a homogenization approach whereby the periodic unit cell was first ho-

mogenized as a linear medium and subsequently a finite-strain dispersion relation was derived for

the averaged medium. This approach therefore does not retain the periodic character in the de-

rived dispersion relation. On the experimental track, numerous studies have been conducted on

nonlinear wave phenomena particularly in periodic granular chains, e.g., [74,87]. It is evident that

the effects of nonlinearity in phononic/granular materials could be utilized to enrich the design

of devices in numerous engineering applications, such as for shock mitigation [88], tunable wave
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filtering [75], focusing [89] and rectification [90]. A more recent study experimentally investigated

nonlinear vibrational waves in periodic strings [91]. The field of nonlinear elastic wave propagation

continues to grow and branch into new directions, such as, for example, supratransmission in dissi-

pative periodic structures [127] and the utilization of large-amplitude waves to create topologically

protected edge states in two-dimensional lattices [128].

4.1.3 Overview

In this chapter, we present a theoretical treatment of elastic wave motion in phononic ma-

terials in the presence of nonlinearity, specifically the type arising from finite elastic strain. We

consider phononic crystals, which is a class of phononic materials in which the prime dispersion

mechanism is Bragg scattering 1 . For ease of exposition, we focus on a one-dimensional (1D)

layered material model admitting only longitudinal displacements (which may also be viewed as a

model for a periodic thin rod). Since the TM method provides the backbone of our approach, we

first briefly overview it, in conjunction with Bloch’s theorem [2], for the exact analysis of simple

1D linear phononic crystals (Section 4.2). We then review the treatment of geometric nonlinearity,

i.e., finite strain, in the context of a homogeneous medium (Section 4.3.1). In Section 4.3.2, we

combine the previous derivations, that is, we allow the finite-strain dispersion relation for a homo-

geneous medium to represent the motion characteristics in a single layer of a periodically layered

1D phononic crystal and subsequently incorporate this relation into the TM formalism. While the

finite-strain dispersion within each layer is exact, the dispersion relation we obtain for the overall

1D phononic crystal represents an approximate solution. In Section 4.5, we verify the derived dis-

persion relation using brute-force space-time simulations followed by a Fourier transformation into

the wave number-frequency domain. The simulations are also used to determine the upper limit of

wave amplitude per unit-cell length for which the theory is accurate. Finally, we use our formulation

to investigate the effects of geometric nonlinearity on the elastic band structure and Bloch mode

1 A phononic material in general may be classified into two types, a phononic crystal and a locally resonant elastic
metamaterial [7, 32]. In this work we focus on the former, but the mathematical treatment is also applicable to the
latter [93].
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shapes as a function of the wave amplitude and shed some light on the possibility of balancing the

linear and nonlinear alterations to the dispersion relation to yield a solitary-like wave.

4.2 Wave propagation in 1D linear phononic crystals

Bloch’s theorem [2] provides the underlying mathematical framework for obtaining the elastic

band structure (i.e., dispersion curves) for a phononic crystal. There are several approaches for

applying the theorem to a unit cell modeled as a continuum. In this work we utilize the TM

method, which is described briefly below (for a background on the method and further details, see

Refs. [3–5]).

We begin our dynamic analysis of a phononic crystal with the statement of the equation of

motion. As mentioned earlier, we restrict ourselves to a 1D model, e.g., a thin rod, for which the

equation of motion is

(Eu,x),x = ρu,tt, (4.1)

where x, t, u = u(x, t), E = E(x) and ρ = ρ(x) denote the position, time, displacement, material

Young’s modulus and material density, respectively. For simplicity, we assume that the cross-

sectional area of the rod is non-varying with x.

Equation (4.1) may be used to study the propagation of elastic waves in various 1D media.

In particular, we consider a homogeneous, linearly elastic 1D rod of infinite extent (having no

boundaries at which waves may reflect), and apply a plane wave solution of the form

u(x, t) = Aei(κx−ωt), (4.2)

where A is the wave amplitude, κ is the wave number, ω is the temporal frequency of the traveling

wave, and i =
√
−1. Here, we make another assumption about the cross-sectional dimensions of

the rod, namely, that they are much smaller than the wavelengths of all waves considered in the

analysis. Substituting Eq. (4.2) into Eq. (4.1) provides the linear dispersion relation

Eκ2 = ρω2. (4.3)
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Figure 4.1: Continuous model of a 1D two-phased phononic crystal viewed as a periodic thin rod.

This approach may also be applied to heterogeneous media provided the heterogeneity is periodic.

In this case, we refer to Eq. (4.2) as Bloch’s theorem (where A = A(x, κ)), and it suffices to analyze

only a single unit cell representing the unique segment that is repeated to generate the periodic

medium and to apply periodic boundary conditions to this segment. In Fig. 4.1, we present a

simple bi-material model of a 1D phononic crystal in the form of a layered periodic rod (where the

unit cell is enclosed in a red dashed box). The spatial lattice spacing of the 1D phononic crystal is

denoted by the constant a. The same analysis may also be applied to a unit cell with a stepwise

varying cross-sectional area, but this case will not be considered here.

For an arbitrary homogeneous layer j in the unit cell, the associated material properties,

which are constant, are denoted as E(j) and ρ(j). The longitudinal velocity in layer j is therefore

c(j) =
√
E(j)/ρ(j). The layer is bordered by layer j − 1 on the left and layer j + 1 on the right.

Denoting the thickness of an arbitrary layer by d(j), the cell length is a =
∑n

j=1 d
(j) for a unit cell

with n layers. Following this notation, the solution to Eq. (4.1) is formed from the superposition of

forward (transmitted) and backward (reflected) traveling waves with a harmonic time dependence,

u(x, t) = [A
(j)
+ eiκ(j)x +A

(j)
− e−iκ(j)x]e−iωt, (4.4)

where κ(j) = ω/c(j) is the layer wave number. The spatial components of Eq. (4.4) may be written

along with those of the stress,

σ = Eu,x, (4.5)
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in compact form as u(x)

σ(x)

 =

 1 1

iZ(j) −iZ(j)


 A

(j)
+ eiκ(j)x

A
(j)
− e−iκ(j)x

 = Hj

 A
(j)
+ eiκ(j)x

A
(j)
− e−iκ(j)x

 ,
where Z(j) = E(j)κ(j). There are two conditions that must be satisfied at the layer interfaces: (1)

the continuity of displacement and (2) the continuity of stress. This allows for the substitution of

the relation x
(j)
R = x

(j)
L +d(j) (where x

(j)
R and x

(j)
L denote the position of the right and left boundary,

respectively, of layer j) into Eq. (4.6) and thus relating the displacement and stress at x
(j)
L to those

at x
(j)
R . Subsequently, by setting x = x

(j)
L in Eq. (4.6), we get u(x

(j)
R )

σ(x
(j)
R )

=HjDjH
−1
j

 u(x
(j)
L )

σ(x
(j)
L )

=Tj

 u(x
(j)
L )

σ(x
(j)
L )

, (4.6)

where

Dj =

 eiκ(j)d(j) 0

0 e−iκ(j)d(j)

, (4.7)

and Tj , the transfer matrix for layer j, has the expanded form

Tj =

 cos (κ(j)d(j)) (1/Z(j)) sin (κ(j)d(j))

−Z(j) sin (κ(j)d(j)) cos (κ(j)d(j))

. (4.8)

As previously stated, Eq. (4.6) relates the displacement and stress at x
(j)
L to those at x

(j)
R

of the same layer j. However, since the construction of the transfer matrix is valid for any layer

and x
(j)
L ≡ x

(j−1)
R , the result in Eq. (4.6) can be extended recursively across several layers. In the

interest of brevity, let y(.) = [u(.) σ(.)]T, thus,

y(xnR) = TnTn−1 . . .T1y(x1
L) = Ty(x1

L). (4.9)

Ultimately, the displacement and stress at the left end of the first layer (x = x1
L) in a unit cell are

related to those at the right boundary of the nth layer (x = xnR) by the cumulative transfer matrix,

T.
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Now we turn to Bloch’s theorem, which states that the time harmonic response at a given

point in a unit cell is the same as that of the corresponding point in an adjacent unit cell except

for a phase difference of eiκa. This relation is given by f(x+ a) = eiκaf(x), which when applied to

the states of displacement and stress across a unit cell gives

y(xnR) = eiκay(x1
L). (4.10)

Combining Eqs. (4.9) and (4.10) yields the eigenvalue problem

[T− Iγ]y(x1
L) = 0, (4.11)

where γ = eiκa. The solution of Eq. (4.11), which appears in complex conjugate pairs, provides the

dispersion relation κ = κ(ω) for the 1D phononic crystal. Real-valued wave numbers, calculated

from γ using Eq. (4.12), support propagating wave modes, whereas imaginary wave numbers,

extracted from γ using Eq. (4.13), represent spatially attenuating modes:

κR =
1

a
Re[

1

i
lnγ], (4.12)

κI =
1

a
Im[

1

i
lnγ]. (4.13)

4.3 Treatment of nonlinearity

We now provide a theoretical treatment of finite-strain dispersion; first we review the pre-

requisite problem of a 1D homogeneous medium, and follow with the derivation for a 1D phononic

crystal. In the homogeneous medium problem, the approach is exact regardless of the amplitude

of the traveling wave, i.e., strong nonlinearities are treated exactly. In the subsequent derivation of

the phononic crystal dispersion curves, the accuracy decreases with increasing wave amplitude.

4.3.1 Finite-strain waves in 1D homogeneous media

The equation of motion and finite-strain dispersion relation is reviewed here for 1D plane

wave motion in a bulk homogeneous medium without consideration of lateral effects. In principle,

this problem is equivalent to that of a slender rod. In the derivations, all terms in the nonlinear
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strain tensor are retained and no high-order terms emerging from the differentiations are subse-

quently neglected. The reader is referred to Ref. [1] for more details as well as a validation of the

theoretical approach by means of a comparison with a standard finite-strain numerical simulation

of a corresponding 1D model with finite dimensions.

4.3.1.1 Equation of motion

Introducing u as the elastic longitudinal displacement, the exact complete Green-Lagrange

strain field in our 1D model is given by

ε =
∂u

∂s
+

1

2
(
∂u

∂s
)2, (4.14)

where the first and second terms on the RHS represent the linear and nonlinear parts, respectively,

and s is the Lagrangian longitudinal coordinate which is equal to x in Eq. (4.1).

Using Hamilton’s principle, we write the equation of motion under longitudinal stress as∫ t

0
(δT − δU e)dt = 0, (4.15)

where T and U e denote kinetic and elastic potential energies, respectively. We note that no external

nonconservative forces are permitted because of our interest in the free wave propagation problem.

Furthermore, the effects of lateral inertia are neglected. The variation of kinetic energy is obtained

using integration by parts and is given as

δT = −ρA
∫ l

0
(u,ttδu)ds, (4.16)

where l denotes the length of a portion of the 1D medium. Similarly, the variation of elastic

potential energy is written as

δU e =

∫ l

0

∫
A

(σδε)dAds, (4.17)

where σ is the longitudinal stress. We choose to base our analysis on the Cauchy stress and model

the stress-strain relationship by Hooke’s law, σ = Eε. Using Eq. (4.17), and with the aid of
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integration by parts, we can now write the variation of elastic potential energy as

δU e =

∫ l

0
{1

2
EAh(h2 − 1)δu′}ds, (4.18)

where u′ = du/ds = u,s, and h is an agent variable defined as

h = 1 + u′. (4.19)

Substitution of Eqs. (4.18) and (4.16) into Eq. (4.15) produces the exact finite-strain equation of

motion as

ρAu,tt =
1

2
EA(3h2 − 1)u′′. (4.20)

If the longitudinal deformation is infinitesimal, then u′ is small and from Eq. (4.19), h ≈ 1. Sub-

stitution of h = 1 into Eq. (4.20) leads to

ρAu,tt = EAu′′, (4.21)

which is the equation of motion describing infinitesimal longitudinal deformation.

4.3.1.2 Dispersion relation

Using Eq. (4.19), we rewrite Eq. (4.20) as

u,tt − c2u′′ =
1

2

[
c2[3(u′)2 + (u′)3]

]′
, (4.22)

where c =
√
E/ρ. Differentiation of Eq. (4.22) with respect to s gives

(u,tt)
′ − c2u(3) =

1

2

[
c2[3(u′)2 + (u′)3]

]′′
. (4.23)

Defining ū = u′ gives

ū,tt − c2ū,ss =
1

2

[
c2[3ū2 + ū3]

]
,ss
, (4.24)

and introducing a phase variable z = |κ|s + ωfint, where ωfin represents the wave frequency under

finite strain, Eq. (4.24) becomes

ω2
finū,zz − c2κ2ū,zz =

1

2
κ2
[
c2[3ū2 + ū3]

]
,zz
. (4.25)
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Figure 4.2: Frequency dispersion curves for a 1D homogeneous elastic medium [1]. The finite-strain
dispersion relation is based on Eq. (4.29); the infinitesimal strain dispersion relation is based on
Eq. (4.30).

Integrating Eq. (4.25) twice leads to

(ω2
fin − c2κ2)ū− c2κ2

2
[3ū2 + ū3] = 0, (4.26)

where the nonzero constants of integration (in the form of polynomials in z) represent secular terms

which we have set equal to zero to ensure that all waves remain bounded. Selecting the positive

root of Eq. (4.26) we get

ū(z) =
−3 +

√
1 + 8ω2

fin/c
2κ2

2
. (4.27)

Since ū = u,s, we recognize that ū = |κ|u,z and therefore Eq. (4.27) represents a first-order ordinary

differential equation with z and u as the independent and dependent variables, respectively.

Now we return to Eq. (4.22) and consider for initial conditions a sinusoidal displacement field

with amplitude B. This represents a fundamental harmonic signal for which we seek to characterize

its dispersive behavior. In principle, any choice of the initial velocity field is permitted. Following

the change of variables that has been introduced, we impose a balance between the spatial and

temporal phase which allows us to set up the problem at z = 0. Thus we have the following
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restrictions on the ū(z) function given in Eq. (4.27):

ū(0) = |κ|B, ū,z(0) = 0. (4.28)

These represent initial conditions in the wave phase, z, for Eq. (4.25) and allow for the introduction

of the wave amplitude, B, into the formulation. Applying Eq. (4.28) to Eq. (4.27) enables us to

use the latter to solve for ωfin for a given value of κ. This leads to the exact dispersion relation,

ωfin(κ;B) =

√
2 + 3B|κ|+(Bκ)2

2
ω, (4.29)

where ω is the frequency based on infinitesimal strain,

ω(κ) = c|κ|. (4.30)

By taking the limit, limB→0 ωfin(κ;B), in Eq. (4.29) we recover Eq. (4.30) which is the standard

linear dispersion relation for a 1D homogeneous elastic medium or a thin rod [6]. We note that Eq.

(4.29) is a general nonlinear dispersion relation that is independent of the wave profile.

For demonstration, six amplitude-dependent finite-strain dispersion curves based on Eq.

(4.29) are plotted in Fig. 4.2. These curves describe the fundamental dispersive properties that

emerge due to the incorporation of finite strain. The curves demonstrate that nonlinearity by itself

causes wave dispersion in an elastic medium, i.e., without the need for a linear dispersive mecha-

nism. From a physical point of view one may envision an initial prescribed harmonic wave being

set free at some point in time. The dispersion relation of Eq. (4.29) describes the frequency versus

wave number relation for this wave as it disperses in the presence of amplitude-dependent finite

strain. This concept was tested numerically and validated in Ref. [1]. Superimposed in Fig. 4.2 is

the dispersion curve based on infinitesimal strain, i.e., Eq. (4.30). It is noted that the deviation

between a finite-strain curve and the infinitesimal-strain curve increases with wave number, and

the effect of the wave amplitude on this deviation is illustrated in the figure for six finite-strain

cases where the value of B is doubled from one case to the other.
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4.3.2 Finite-strain waves in 1D phononic crystals

The TM method is now used to obtain a dispersion relation for a 1D phononic crystal whose

constituent materials are exhibiting finite-strain dispersion. The outcome is an approximate over-

all dispersion relation since the construction of the transfer matrix is based on a linear strain-

displacement relationship [see Eq. (4.5) and (4.6)]. While not exact, this approach provides a

quantitative prediction of the effects of nonlinearity on the location and size of band gaps and the

values of the group velocity across the spectrum, all as a function of wave amplitude.

As presented in Section 4.2, the TM method is applicable in either the absence or presence

of nonlinearity; the distinction is made in the definition of κ(j) in Eq. (4.4). For the linear prob-

lem, κ(j) = κ(j)(ω) = ω/c(j) as outlined earlier. A similar relationship between the jth-layer wave

number and the finite-strain wave frequency, ωfin, is now developed, i.e., κ(j) = κ(j)(ωfin).
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Figure 4.3: Frequency band structure for a 1D phononic crystal under finite strain [obtained using
Eq. (4.33)]. For comparison, the dispersion curves under infinitesimal strain are included. Also,
corresponding dispersion curves for a statically equivalent 1D homogeneous elastic medium are
overlaid. The nonlinearity-induced shifting of the dispersion curves is marked at two frequencies.
Points PL and PNL are at frequency ω/c(1) = 2 and lie on the first infinitesimal-strain and the first
finite-strain pass-band branch, respectively. Points SL and SNL are at frequency ω/c(1) = 5 and lie
on the first infinitesimal-strain and the first finite-strain stop-band branch, respectively.
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Figure 4.4: Effect of nonlinearity on the group velocity for the 1D phononic crystal and the stat-
ically equivalent 1D homogeneous elastic medium considered in Fig. 4.3. (a) unfolded frequency
band structure, (b) frequency versus group velocity, (c) group velocity versus wave number. The
nonlinearity-induced shifting of the dispersion curves at frequency ω/c(1) = 2 is noted.
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First we rewrite Eq. (4.29) explicitly for layer j,

ωfin = c(j)κ(j)

√
2 + 3Bκ(j) + [Bκ(j)]2

2
, (4.31)

which may be cast as the following 4th order characteristic equation:

[κ(j)]2(1 +Bκ(j))(2 +Bκ(j))− 2
ω2

fin

[c(j)]2
= 0. (4.32)

Solving Eq. (4.32) gives

κ
(j)
1,2 =

1

12B

(
− 9 + P (j) ∓

√
Q(j) −R(j)

)
, (4.33a)

κ
(j)
3,4 = − 1

12B

(
9 + P (j) ±

√
Q(j) +R(j)

)
, (4.33b)

where

P (j) =

√
33c(j)A(j) + 12(4[c(j)]2 − 24B2ω2

fin + [A(j)]2)

c(j)A(j)
, (4.34a)

Q(j) =
66c(j)A(j) − 48([c(j)]2 − 6B2ω2

fin)− 12[A(j)]2

c(j)A(j)
, (4.34b)

R(j) =
54
√

3c(j)A(j)√
11c

(j)
0 A(j) + 4(4[c(j)]2 + [A(j)]2 − 24B2ω2

fin)

, (4.34c)

and

A(j) =

(
− 99B2ω2

finc
(j) + 8[c(j)]3 + 3Bωfin

√
(1536B2 + 321[c(j)]2)B2ω4

fin − 48[c(j)]4

) 1
3

. (4.34d)

At this point, Eq. (4.33) is substituted into the Z(j) = E(j)κ(j) equations in the TM formu-

lation presented in Section 4.2. This yields a nonlinear enriched eigenvalue problem that we may

use to obtain an approximation of the finite-strain dispersion curves of a 1D phononic crystal 2

. While the technique is not limited to small values of B/a, its accuracy reduces as the strength

of the nonlinearity increases. In Section 4.5, we numerically examine the accuracy as a function of

B/a.

2 This approach may in principle also be applied to other types of waves such as electromagnetic waves in a
photonic crystal [129]. In that case, the nature of the nonlinearity will be different, but the process of enriching the
TM formulation with a wavenumber that point-wise captures the nonlinear behavior will essentially be the same.
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To demonstrate the effects of nonlinearity, we consider the same geometric features as the

periodic bi-material rod in Fig. 4.1 and the following ratio of material properties: c(2)/c(1) = 2 and

ρ(2)/ρ(1) = 3. Furthermore, we consider a bi-layered unit cell in which d(2) = d(1). The results are

shown in Fig. 4.3 for a phononic crystal of size a = 1 (arbitrary units) and a value of wave amplitude

of B/a = 1/8. Superimposed, for comparison, are the dispersion curves on the basis of infinitesimal

strain and the corresponding dispersion curves for an equivalent statically homogenized medium

for which the speed of sound is c (obtained by the standard rule of mixtures). We observe in

the figure that the finite-strain dispersion curves asymptotically converge to the infinitesimal and

homogenized curves at long wavelengths as expected. We also note that the finite strain causes the

dispersion branches to rise and the band-gap sizes to increase significantly−an attractive trait for

many applications involving sound and vibration control. This behavior, however, is dependent on

the type of nonlinearity considered.

The influence of the nonlinearity on the frequency-wave number relation naturally impacts

the spectrum of group velocities, defined as

cg =
∂ωfin(κ;B)

∂κ
. (4.35)

In Fig. 4.4, we show the amplitude-dependent relationship between the frequency and the group

velocity and between the group velocity and the wave number. The unfolded frequency band

structure is also included for correlation. Most noticeable in this figure is the significant rise in

the group velocity with amplitude. A similar rise takes effect for the phase velocity as well (not

shown), indicating that with finite strain, the medium’s permissible wave speeds are supersonic

with respect to the nominal speeds under linear, infinitesimal strain. We also note that the homog-

enized medium’s group velocity curves under finite strain are linear and exceed the maximum group

velocity values for the corresponding phononic crystal; whereas, in contrast, the maximum group

velocity in the infinitesimal-strain problem overlaps with the corresponding homogenized medium’s

horizontal group velocity line. This disparity may be a manifestation of the linear approximation

inherent in the TM method. Thus the minimum distance between the maximum group velocity of a
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phononic crystal and the corresponding homogenized medium’s group velocity line may be viewed

as a measure of accuracy for a given value of wave amplitude B/a. This conjecture is a subject for

a future investigation.

In Fig. 4.5, we show three time snap shots of Bloch mode shapes corresponding to the pair of

isofrequency pass-band points (top row) and the pair of isofrequency stop-band points (bottom row)

marked in Fig. 4.3. The increase in the wavelength due to the nonlinearity at a given frequency,

e.g., by comparing point PNL to PL, is observed in Fig. 4.5 in the form of a slight stretching of

the waveform. The effect of the nonlinearity on the group velocity, as indicated in Fig. 4.4, is less

obvious in the mode shape diagrams. The effect of the nonlinearity on stop-band stationery waves

appears to be a smoothening of the spatial profile. A strengthening of the spatial attenuation is

also observed and is consistent with the prediction in Fig. 4.3 at the selected frequency.
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Figure 4.5: Three time snap shots of the Bloch mode shape over six unit cells corresponding to the
four points PL, PNL, SL, and SNL marked in Fig. 4.3. The Bloch mode shape for points PL and
PNL are shown in (a), (b), and (c), while the Bloch mode shapes for points SL and SNL are shown
in (d), (e), and (f). Red dashed curves correspond to finite strain and black solid curves correspond
to infinitesimal strain. Each pass-band and stop-band sets of curves are normalized with respect
to the maximum displacement value of the infinitesimal strain case at time t.
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Figure 4.6: Illustration of the contrast between the effect of the periodicity on the dispersion as
seen in the linear phononic crystal (see Section 4.2) versus the effect of the finite-strain nonlinearity
on the dispersion which is here brought about by increasing the wave amplitude in a homogeneous
medium with the same properties as a statically homogenized version of the phononic crystal (see
Section 4.3.1). In the nonlinear phononic crystal considered in Section 4.3.2, the two opposing
effects are simultaneously present and a balance may be practically realized up to a certain wave
number. For a wave amplitude of B/a = 1/8, the two effects are approximately in balance up
to κ = 5π/8 as shown in (a). The impact of this balance on the space-time displacement profile
is demonstrated in (b). The A, B, and C profiles are obtained, respectively, by direct numerical
integration, the present TM method with nonlinear enrichment, and the standard TM method.
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4.4 Balance between Linear and Nonlinear Dispersion

In the literature, a common view is that nonlinearity of the type considered in this study

tends to steepen, and subsequently narrow, a wave because large-amplitude constituent waves are

able to catch up with slower low-amplitude ones; and, in contrast, dispersion causes a wave to widen

its profile spatially because different constituent waves travel at different speeds [130]. Here, we

view this problem from a different perspective. We consider the effect of the periodicity in altering

the dispersion (which is a linear mechanism) and, in parallel, the effect of the nonlinearity in also

altering the dispersion. In Fig. 4.6a, we reproduce the results displayed in Fig. 4.3 with a focus

on the first Brillouin zone. The figure illustrates the two effects when taking place separately or

in combination. In the structure considered, we observe that an amplitude of B/a = 1/8 allows

the two effects to be practically in balance up to approximately κ = 5π/8, which corresponds to a

wavelength as small as roughly three times the unit cell size. Such condition, in principle, brings

rise to a solitary-type wave within this range of wavelengths.

This linear-nonlinear dispersion balancing phenomenon is elucidated further by plotting in

Fig. 4.6b the mode shapes corresponding to Points A, B, and C marked in Fig. 4.6a. We observe

in A that the finite strain steepens a sine wave until it eventually reaches the point of bifurcation

(not shown). In contrast, in C we observe a linear wave with a spatially variant profile at each time

step due to the periodically alternating material properties. In B, which corresponds to a balanced

state, no wave profile steepening is observed (thus the wave is stabilized) and the spatial profile is

now invariant at each time window.

4.5 Numerical verification

In this section, we conduct direct numerical simulations to verify the theory and determine

the limits of its accuracy as the wave amplitude is increased. For this purpose and in the interest of

simplicity, we consider a bi-material rod with the following material properties ratio: c(2)/c(1) = 3/2
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Figure 4.7: Numerical verification of the proposed TM method with nonlinear enrichment as ap-
plied to the 1D bi-material phononic crystal rod described in Section 4.5. (a)-(h) Finite-strain
dispersion curves obtained by theory and simulation for a range of excitation wave numbers. (i)
A superposition of the simulations spectra overlaid on the theoretical results. For comparison, the
linear, infinitesimal-strain dispersion curves are also plotted.

and ρ(2)/ρ(1) = 4/9. The rod consists of 200 unit cells each consisting of two equal sized layers,

and each unit cell has 25 grid points. A standard second-order finite-difference scheme is used to

solve Eq. (4.24) with periodic boundary conditions applied. A prescribed sinusoidal displacement
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Figure 4.8: Examination of the limit on wave amplitude for obtaining accurate results by the
proposed TM method with nonlinear enrichment. Similar to Figure 4.7, these results are for the
1D bi-material phononic crystal rod described in Section 4.5. For κea = 3.1, the theoretical results
breakdown when B/a exceeds 1/8. For comparison, the linear, infinitesimal-strain dispersion curves
are also plotted.

gradient field with an initial amplitude of |κe|B and wavenumber κe is applied across the length

of the rod, i.e., ū(x, t = 0) = |κe|B sin(κex). A constant time step of 10−3(s) is used through the

integrations sweep with a total time varying between 300(s) to 400(s) depending on the value of κe

and the requirements for numerical stability. The space-time solution is then Fourier transformed

to obtain an intensity distribution in the wave number-frequency domain. The results are shown in

Fig. 4.7 for a unit cell of size a = 10 and wave amplitude of B/a = 1/8, considering eight different

values of κe. Superimposed, for comparison, are the dispersion curves on the basis of finite as well as

infinitesimal strains. A perfect agreement between the numerical wavenumber-frequency spectrum

and the analytically predicted dispersion relation from Eq. (4.33) is clearly observed. Figure 4.8

shows the same set of results for κea = 3.1 and for a range of values of B/a indicating that the

present technique is accurate up to B/a = 1/8, i.e., for wave amplitudes that are between one sixth

and one fifth of the unit cell length.
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4.6 Conclusions

We have theoretically derived a wave number versus frequency finite-strain dispersion relation

for Bloch wave propagation in a slender 1D phononic crystal (layered periodic elastic medium with

a small cross section). The effect of finite strain has been incorporated exactly at the individual

homogeneous layer level. Subsequently, the TM method has been applied to the unit cell to ana-

lytically provide an approximate nonlinear dispersion relation for the periodic medium. Thus this

approach represents an application of the TM method with a nonlinear enrichment (in principle, it

can be implemented for other types of waves such as nonlinear electromagnetic waves in a photonic

crystal). Due to the assumption of a linear strain-displacement gradient relation in the TM method,

the analysis becomes less accurate as the strength of the nonlinearity increases. Using brute-force

numerical simulations, we demonstrated that the technique is accurate up to an amplitude that is

roughly between one eight of the unit-cell length (see Fig. 4.8).

The results provide a quantitative prediction of the changes in the dispersion curves when

periodicity and finite strain are introduced separately or in combination. In particular, we have

shown that the wave amplitude could be chosen to create an approximate balance between the two

effects up to a certain wave number, creating a solitary-type wave as illustrated in Fig. 4.6.

The dynamic behavior revealed by Eqs. (4.29) and (4.33) is based on our underlying assump-

tion of Green-Lagrange strain at the homogeneous layer level. The same technique may be applied

for a model with material nonlinearity in addition to the geometric nonlinearity. Specific choices

of material and geometric nonlinearities could in principle lead to qualitatively different dispersion

behavior, and thus it is necessary for future work to examine the problem experimentally to deter-

mine the most appropriate constitutive relation and strain measure guided by the theory presented

in this chapter.
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Chapter 5

Dispersion characteristics of a nonlinear elastic metamaterial1

In this chapter, we study wave dispersion in a one-dimensional nonlinear elastic metamaterial

consisting of a thin rod with periodically attached local resonators. Our model is based on an

exact finite-strain dispersion relation for a homogeneous solid, utilized in conjunction with the

standard transfer matrix method for a periodic medium. The nonlinearity considered stems from

large elastic deformation in the thin rod, whereas the metamaterial behavior is associated with the

dynamics of the local resonators. We derive an approximate dispersion relation for this system and

provide an analytical prediction of band-gap characteristics. The results demonstrate the effect

of the nonlinearity on the characteristics of the band structure, including the size, location, and

character of the band gaps. For example, large deformation alone may cause a pair of isolated

Bragg-scattering and local-resonance band gaps to coalesce. We show that for a wave amplitude on

the order of one-eighth of the unit cell size, the effect of the nonlinearity in the structure considered

is no longer negligible when the unit-cell size is one-fourteenth of the wavelength or larger.

5.1 Introduction

5.1.1 Elastic metamaterials

Phononic crystals (PCs) are periodic materials with a spatial modulation of inertial and/or

elastic properties. For a given choice of unit-cell geometry and/or type and distribution of con-

stituent materials, PCs can produce absolute band gaps due to Bragg scattering where acous-

1 This chapter is drawn from Ref. [93] and has been adapted to suit the style and the notation of the dissertation.
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tic/elastic waves are forbidden to propagate [35–37]. However, in order to open band gaps in the

low frequency range of up to a few hundred kHz, the dimension of a periodic structure tends to

be too large for a wide range of practical applications. This limitation may be overcome by using

locally resonant elastic metamaterials (MMs), introduced by Liu et al. [38], in which band gaps may

open up in the subwavelength regime and thus do not require the unit cell size to be on the order as

the wavelength. Within a band gap, for a PC or a MM, the wave energy is attenuated within only

a small number of repeated unit cells. In addition to the possibility of subwavelength band gaps,

MMs exhibit other unique physical properties that cannot be found in natural materials, such as

negative properties [38–43]. A recent article and discussion in Applied Mechanics Reviews provide

a broad review of PCs and MMs covering historical and recent developments as well as an outlook

on future research directions [7, 44,45].

The engineering of common structures such as rods, beams and plates with features, or

microstructures, that house local resonators allows for the emergence of metamaterial behavior

across the structure as a whole. This provides a promising avenue for vibration mitigation using

low-frequency bands gaps and effective properties. In two-dimensional plate-like structures, this

concept has been realized by embedding soft inclusions [46], erecting pillars [47–49], suspending

heavy inclusions within a lattice [50], among other configurations. In one-dimensional (1D) struc-

tures, among the metamaterial configurations considered are three-phase rods [52], beams with

resonating rings [53, 54], sandwich beams with internal mass-spring resonators [55], beams with

side stubs [56, 57] and beams with small masses suspended on a membrane [58]. The band-gap

formation mechanism in this class of 1D systems was studied analytically by Xiao et al. in the

context of mass resonators attached to strings [59], rods [60] and beams [61]. In the case of rods,

multi-degree-of-freedom resonators were considered to achieve a cluster of multiple subwavelength

band gaps [60]. Liu and Hussein, on their part, investigated the effects of the various types and

properties of periodicity on the frequency band structure considering flexural wave propagation in

Euler and Timoshenko beams [62]. The conditions for transition between the Bragg scattering and

the local resonance hybridization regimes have also been investigated in depth [59–62].
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5.1.2 Elastic wave dispersion in the presence of nonlinearity

Wave motion in elastic solids is commonly studied in the context of linear theory whereby

linear constitutive laws and linear strain-displacement relationships are assumed [63, 64]. The in-

corporation of nonlinearity, however, is necessarily incorporated whenever large deformations are

to be accounted for [65,66,68,131]. In a nonlinear regime, the wave motion is amplitude-dependent.

Capturing this property within the dispersion relation provides a general and fundamental descrip-

tion of the nonlinear wave propagation characteristics. Abedinnasab and Hussein [1] derived exact

dispersion relations for axial and flexural elastic wave motion in homogeneous rods and beams

under finite strain.

Nonlinear PCs and MMs have received even less attention due to the additional difficulties in

modeling and characterization. Needless to say, there are unique opportunities associated with large

motion in PCs and MMs, such as, for example, solitary wave tuning [74] and amplitude-dependent

band-gap engineering [75]. Several approaches have been adopted from the nonlinear dynamics lit-

erature to treat this class of problems. For example, Manktelow et al. studied intensity-dependent

dispersion of acoustic (and electromagnetic) waves in 1D weakly nonlinear periodic media using a

perturbation method and a quasi-linear approach in conjunction with the Transfer Matrix (TM)

method [85]. In a recent investigation, we have studied the effect of finite deformation in 1D lay-

ered PCs using exact dispersion analysis in the different homogeneous layers and the standard TM

method across the unit cell [92].

5.1.3 Overview

The goal of this chapter is to examine the effect of nonlinearity, finite strain in particular, on

the band-gap characteristics of a 1D MM consisting of a periodic suspension of masses connected

via springs to a homogeneous elastic rod, as illustrated in Fig. 5.1. The nonlinearity considered

arises from large elastic deformation in the rod, whereas the metamaterial behaviour is associated

with the dynamics of the local resonators. Our model is based on embedding the exact finite-strain
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Figure 5.1: A finite section consisting of three unit cells of an infinite 1D nonlinear elastic MM.

dispersion relation for a 1D homogeneous rod [1] into the wavenumber variable in the standard TM

method for a periodic elastic medium [5]. This approach has been applied earlier to a PC rod to

examine the interplay between nonlinearity and periodicity [92]; here we apply it to a MM rod.

We derive a dispersion relation for the system in Fig. 5.1 and provide an analytical prediction of

various band-gap characteristics.

Since the TM method provides the backbone of the approach, we first briefly overview it,

in conjunction with Bloch’s theorem [2], for the exact analytical analysis of a simple 1D linear

elastic MM (Section 5.2.1). Furthermore, we follow the analysis framework provided by Xiao et

al. [59] which allows for the derivation of dispersion characteristics of the band gaps and presents

physical models for equivalent finite structures (Section 5.2.2). This analysis places emphasis on

the role of the resonator parameters. We then review the treatment of geometric nonlinearity, i.e.,

finite strain, in the context of a homogeneous medium following the theory proposed by Abedin-

nasab and Hussein [1] (Section 5.3.1). In Section 5.3.2, we combine the previous derivations. The

homogeneous-medium finite-strain dispersion relation is used to represent the motion characteris-

tics in the rod portion of the unit cell and is subsequently incorporated into the TM formalism

in order to account for the local resonator within the unit cell. While the finite-strain dispersion

relation for the bare rod is exact, the dispersion relation we obtain for the overall MM represents

an approximate prediction due to an assumption of a linear relationship between the strain and

the displacement gradient in the TM method. Finally, we use our formulation to investigate the

effects of the nonlinearity on the band-structure characteristics and highlight the differences in the

response compared to the corresponding linear model.
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5.2 Dispersion characteristics of a 1D linear elastic metamaterial

The dispersion characteristics of periodic media are related to how waves interfere across

unit cells with varying material and/or geometrical properties. Bloch’s theorem [2] provides the

mathematical framework for studying the dispersion, yielding a relationship between frequency

and wavenumber (or wave vector) which when represented graphically displays the frequency band

structure. We begin our dynamic analysis of a 1D MM with the statement of the equation of

motion for longitudinal wave motion

(σA),x + F = ρAu,tt, (5.1)

where σ = σ(x, t), F = F (x, t), u = u(x, t), A = A(x) and ρ = ρ(x) denote the stress, external

body force (per unit length), displacement, cross sectional area, and material density, respectively.

As indicated, the value of each of these quantities is dependent upon the position x along the axial

direction and, with the exception of the area and density, time t. Differentiation with respect to

position and/or time is denoted by the appropriate subscript following a quantity. For example,

(.),x indicates differentiation with respect to position while (.),tt signifies double differentiation

with respect to time. By considering free wave motion, F = 0, and a linearly elastic material, i.e.,

σ = Eu,x, where E = E(x) is the Young’s modulus of the material, we obtain

(EAu,x),x = ρAu,tt. (5.2)

For a uniform, homogeneous rod of infinite extent (having no boundaries at which waves may

reflect), we assume a plane wave solution of the form

u(x, t) = Bei(κ∗x−ωt), (5.3)

where B is the wave amplitude, κ∗ is the wavenumber in the medium, ω is the temporal frequency

of the traveling wave, and i =
√
−1. Substituting Eq. (5.3) into Eq. (5.2) provides the linear

dispersion relation

Eκ∗2 = ρω2. (5.4)
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This approach may be extended to heterogeneous and/or non-uniform media provided the hetero-

geneity and/or non-uniformity are/is periodic. In this case, it suffices to analyze only a single unit

cell and apply the TM method along with Bloch’s theorem. Figure 5.1 displays a simple model of

a 1D MM with a spatial lattice spacing constant a.

5.2.1 Transfer matrix method

The TM method is commonly applied to a unit cell with different layers [5]. For the 1D

MM we are considering, we will view the bare rod as a uniform and homogeneous single-layer unit

cell and assume a solution to Eq. (5.2) consisting of a superposition of forward (transmitted) and

backward (reflected) traveling waves with a harmonic time dependence,

u(x, t) = (B+eiκ∗x +B−e−iκ∗x)e−iωt, (5.5)

where B+ and B− are amplitudes of the forward and backward traveling waves, respectively. A

state vector of the unit cell composed of spatial components of the displacement and the axial force

(defined as f = EAu,x) is written as

y(x) =

 u(x)

f(x)

 =

 1 1

iZ −iZ


 B+eiκ∗x

B−e−iκ∗x

 = H

 B+eiκ∗x

B−e−iκ∗x

 , (5.6)

where Z = EAκ∗. Using xR and xL to denote the position of the right and left boundaries of the

unit cell, and recognizing that xR = a+ xL, Eq. (5.6) becomes

y(xR) =

 u(xR)

f(xR)

 = H

 eiκ∗a 0

0 e−iκ∗a


 B+eiκ∗xL

B−e−iκ∗xL

 , (5.7)

We rewrite Eq. (5.7) using Eq. (5.6) and define the transfer matrix as

U = H

 eiκ∗a 0

0 e−iκ∗a

H−1 =

 cos (κ∗a)
1

Z
sin (κ∗a)

−Z sin (κ∗a) cos (κ∗a)

 . (5.8)

The transfer matrix, U , allows us to directly relate the plane wave solution from the left side

of the unit cell to its right side,

y(xR) = Uy(xL). (5.9)
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Figure 5.2: Graphical representation of 1D MM unit cell model: a homogeneous continuous rod
with a single spring-mass resonator attached along the axial direction. The material properties and
a labeling scheme are included.

To incorporate the contribution of the attached mass-spring oscillator we form the following matrix

P =

 1 0

kd 1

 , (5.10)

where kd = −(ω2km)/(k − mω2) represents the dynamic stiffness of a single degree-of-freedom

oscillator with mass m and stiffness k. The total transfer matrix for the unit cell N may now be

formed in the following manner:

y(x
(N+1)
L ) = Py(x

(N)
R ) = PUy(x

(N)
L ) = Ty(x

(N)
L ). (5.11)

Using Bloch’s theorem we can also write

y(x+ a) = eiκay(x), (5.12)

where κ is the wavenumber of a wave travelling along the 1D MM as a whole (rod and attached

resonators). Using x = xL as a reference point, and combining the TM method with the expression

of Bloch’s theorem, we obtain the eigenvalue problem

[T− eiκaI]y(xL) = 0, (5.13)

which may be rewritten as

T(ω)y(xL) = λy(xL), (5.14)

in which λ = eiκa and y(xL) are complex eigenvalues and eigenvectors, respectively. By solving the

eigenvalue problem of Eq. (5.14), we generally obtain a complex conjugate pair of eigenvalues:

λ1 = eiκ1a, λ2 = eiκ2a. (5.15)
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For any given ω, if κ is a solution so is −κ which correspond to the propagation of a wave in the

positive and negative directions, respectively. Thus κ1 = κ and κ2 = −κ.

For convenience, a corresponding characteristic equation may be derived. From Eq. (5.11),

the complete form of the transfer matrix of the unit cell is expressed as

T =

 cos (κ∗a)
1

Z
sin (κ∗a)

kd cos (κ∗a)− Z sin (κ∗a)
kd

Z
sin (κ∗a) + cos (κ∗a)

 , (5.16)

from which we obtain the following dispersion relation in analytical form,

cosκa = cos (κ∗a) +
kd

2Z
sin (κ∗a), (5.17)

which may be rewritten in non-dimensional form as

cosκa = cos (Ωπ) +
V

2
sin (Ωπ). (5.18)

In Eq. (5.18), Ω denotes the non-dimensional frequency, defined as

Ω =
κ∗a

π
, (5.19)

and V denotes the non-dimensional dynamic stiffness of the resonator which is related to the

resonator and rod parameters by

V =
kd

Z
= − ω2km

EAκ∗(k −mω2)
. (5.20)

Considering infinitesimal strain, we express κ∗ in Eqs. (5.16)-(5.20) as a frequency-dependent func-

tion, ĥ(ω), based on the linear dispersion relation for the bare rod, which, from Eq. (5.4), is

κ∗inf = ĥ(ω) = ω/c, (5.21)

where c =
√
E/ρ. When finite strain is considered, a new expression for κ∗ is needed as described

in Section 5.3.
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5.2.2 Band gaps

In this section, we provide a brief formulation for the frequencies of the band-gap edges for

the 1D MM following the approach of Xiao et al. [59] which was applied to the analogous problem of

a string supporting a periodic array of local resonators. We use the dispersion analysis presented in

the previous section to derive sets of equations to predict the frequencies of the stop- and pass-band

edges. Free waves can propagate in this system when κ in Eq. (5.18) is pure real, for which the

condition −1 ≤ cosκa ≤ 1 applies [132]. Thus the frequencies of the band-gap edges are governed

by cos (κa) = ±1. Applying this condition to Eq. (5.18) we get

cos (Ωπ) +
V

2
sin (Ωπ) = ±1, (5.22)

or equivalently

(cos (Ωπ) +
V

2
sin (Ωπ)− 1)(cos (Ωπ) +

V

2
sin (Ωπ) + 1) = 0, (5.23)

which, in turn, is equivalent to

sin
Ωπ

2
(V sin

Ωπ

2
+ 2 cos

Ωπ

2
) = 0, (5.24a)

or

cos
Ωπ

2
(V cos

Ωπ

2
− 2 sin

Ωπ

2
) = 0. (5.24b)

For convenience, the band-gap edge frequencies given by Eqs. (5.24a) and (5.24b) are labeled as

Mode-A and Mode-B frequencies, respectively. These equations satisfy the following conditions

sin
Ωπ

2
= 0, (5.25a)

or

−2 cot
Ωπ

2
= V, (5.25b)

for Mode A, and similarly

cos
Ωπ

2
= 0, (5.26a)
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or

2 tan
Ωπ

2
= V, (5.26b)

for Mode B. These relations are used to directly predict the frequencies of the band-gap edges. The

band-gap edge frequencies governed by Eqs. (5.25a) and (5.26a) are independent of the resonator

properties and are defined as

Ω = n, (n = 1, 2, 3, ...). (5.27)

On the other hand, the band-gap edge frequencies governed by Eqs. (5.25b) and (5.26b) are affected

by the resonator properties and thus correspond to the hybridized local resonance band gap.

By tuning the frequency in Eq. (5.21) to ω =
√
k/m and substituting back into Eq. (5.19)

we get the non-dimensional resonance frequency

Ω =
a

π

√
ρ

E

√
k

m
. (5.28)

As noted in Refs. [ [59]] and [ [60]], the local resonance frequency may be exactly tuned to the Bragg

conditions by equating Eq. (5.28) to Eq. (5.27). This yields an explicit formula for the resonator

stiffness, k, that enables a complete coalescence between the hybridized local resonance band gap

and the various Bragg-scattering band gaps; this formula is

k =
E

ρa2
mn2π2, (n = 1, 2, 3, ...). (5.29)

A similar formula could be obtained for m in term of k. Upon reshuffling of parameters, Eq. (5.29)

can be conveniently written as

1

2π

√
k

m
=
nc

2a
, (n = 1, 2, 3, ...), (5.30)

where the left hand side represents the local-resonance frequency, while the right hand side rep-

resents the Bragg condition frequencies associated with the 1D periodic lattice. This relationship

explicitly demonstrates the exact tuning of the local-resonance frequency to the Bragg conditions,

which corresponds to the band-gap coupling conditions revealed in Refs. [ [59]] and [ [60]].
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Figure 5.3: Finite rod with an attached spring-mass resonator and (a) fixed-fixed or (b) free-free
boundaries.

A physical interpretation of these equations can be made by considering the natural fre-

quencies of two corresponding finite structures representing the configuration of the 1D MM unit

cell. The end boundary conditions of these two finite structures are fixed-fixed and free-free, respec-

tively, as demonstrated in Fig. 5.3. Following Ref. [59], an analysis of these two structure yields the

band-gap edge frequencies of the original infinite 1D MM, i.e., the same frequencies obtained from

Eqs. (5.25) and (5.26), respectively. We consider a harmonic wave solution for the rod structures

of Fig. 5.3,

ur(x, t) =


(α1 sinκ∗x+ β1 cosκ∗x)e−iωt, 0 ≤ x ≤ a

2

(α2 sinκ∗(x− a

2
) + β2 cosκ∗(x− a

2
))e−iωt,

a

2
≤ x ≤ a

, (5.31)

where ur represent the longitudinal displacement within the strucutre, a is the length of structure

(which is equal to the length of the unit cell in the infinite medium), and α and β are coefficients

describing the wave amplitude. The governing equation of the resonator, located at x = a/2, is

mum,tt(t) + k(um(t)− ur(
a

2
, t)) = 0, (5.32)

where um(t) is the displacement of the resonator mass. Assuming ur(t) = U0e
−iωt, Eq. (5.32) is

solved for the amplitude U0 to give

U0 =
kβ2

k −mω2
. (5.33)

In both structures, applying the compatibility condition on Eq. (5.31) at x = a/2 gives

α1 sin(
κ∗a

2
) + β1 cos(

κ∗a

2
) = β2, (5.34)
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and enforcing axial force equilibrium at the same point gives

α1 cos(
κ∗a

2
)− β1 sin(

κ∗a

2
) = α2 − β2V. (5.35)

The boundary conditions of the structure showed in Fig. 5.3a are fixed-fixed, that is, ur(0, t) =

ur(a, t) = 0. From Eq. (5.31), this produces
β1 = 0

α2 sin(
κ∗a

2
) + β2 cos(

κ∗a

2
) = 0

, (5.36)

On the other hand, the boundary conditions of the structure showed in Fig. 5.3b are free-free, that

is, (ur),x(0, t) = (ur),x(a, t) = 0; this yields
α1 = 0

α2 cos(
κ∗a

2
)− β2 cos(

κ∗a

2
) = 0

. (5.37)

We can represent Eqs. (5.34), (5.35) and (5.36) for the fixed-fixed structure in a matrix form as
sin(

κ∗a

2
) 0 −1

cos(
κ∗a

2
) −1 V

0 sin(
κ∗a

2
) cos(

κ∗a

2
)




α1

α2

β2

 =


0

0

0

 , (5.38)

and, similarly, for the free-free structure, Eqs. (5.34), (5.35) and (5.37) are represented as
cos(

κ∗a

2
) 0 −1

− sin(
κ∗a

2
) −1 V

0 cos(
κ∗a

2
) − sin(

κ∗a

2
)




β1

α2

β2

 =


0

0

0

 . (5.39)

As in the dispersion analysis, the form of κ∗ as a function of frequency is dependent on whether

infinitesimal or finite strain is assumed.

The natural frequencies of each structure can be found by solving these sets of equations

separately. For the fixed-fixed structure, we get

sin
Ωπ

2
(V sin

Ωπ

2
+ 2 cos

Ωπ

2
) = 0, (5.40)
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which is identical to Eq. (5.24a). For the free-free structure, we obtain

cos
Ωπ

2
(V cos

Ωπ

2
− 2 sin

Ωπ

2
) = 0, (5.41)

which, on its part, is identical to Eq. (5.24b).

Now that the physical interpretation of Eqs. (5.25) and (5.26) is elucidated, it is worth point-

ing out, as done for the analogous string-based problem in Ref. [ [59]], that Eqs. (5.25a) and (5.26a)

represent the antisymmetric modes for a fixed-fixed and a free-free structure, respectively. Here,

the central point of the rod, x = a/2, forms a node with zero displacement which causes the system

to be independent of the resonator and represent simply a rod [63]. On the other hand, Eqs. (5.26a)

and (5.26b) represent the symmetric modes for a fixed-fixed and a free-free structure, respectively,

where in this case the displacement of the central point depends on the resonator parameters.

Moreover, we can find explicitly the influence of the resonator parameters, m and k, on the

behaviour of the band-gap edge frequencies by substituting Eq. (5.20) into Eqs. (5.25b) and (5.26b)

and solving for the mass and stiffness for Mode A and Mode B, respectively. For Mode A, we obtain

m =
2Zk cot(

Ωπ

2
)

ω2(2Z cot(
Ωπ

2
) + k)

, (5.42a)

k =
2Zmω2 cot(

Ωπ

2
)

2Z cot(
Ωπ

2
)−mω2

, (5.42b)

and for Mode B we obtain

m =
2Zk tan(

Ωπ

2
)

ω2(2Z tan(
Ωπ

2
)− k)

, (5.43a)

k =
2Zmω2 tan(

Ωπ

2
)

2Z tan(
Ωπ

2
) +mω2

. (5.43b)
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5.3 Treatment of nonlinearity

In this section, we provide a theoretical treatment of finite-strain dispersion. As mentioned

earlier, the process involves obtaining the dispersion relation for a 1D homogeneous medium (e.g., a

homogeneous thin rod) and then using it in conjunction with the TM method to obtain a prediction

of the dispersion relation for the 1D MM as a whole.

5.3.1 Finite-strain waves in a 1D homogeneous rod

The equation of motion and finite-strain dispersion relation is reviewed here for 1D plane

wave motion in a bulk homogeneous medium without consideration of lateral effects. In principle,

this problem is equivalent to that of a slender rod which is what we are interested in for the 1D

MM derivations to follow. In the nonlinear formulation, all terms in the nonlinear strain tensor are

retained and no high order terms emerging from the differentiations are neglected. The reader is

referred to Ref. [ [1]] for more details as well as a validation of the theoretical approach by means

of a comparison with a standard finite-strain numerical simulation of a corresponding 1D model

with finite dimensions.

5.3.1.1 Equation of motion

The exact complete Green-Lagrange strain field in our 1D model is given by

ε =
∂u

∂s
+

1

2
(
∂u

∂s
)2, (5.44)

where the first and second terms on the right-hand side represent the linear and nonlinear parts,

respectively, and s denotes a Lagrangian longitudinal coordinate which is equal to x in Eq. (5.2).

Using Hamilton’s principle, we write the equation of motion under longitudinal stress as∫ t

0
(δT − δU e)dt = 0, (5.45)

where T and U e denote kinetic and elastic potential energy, respectively. No external non-conservative

forces and moments are permitted because of our interest in the free wave propagation problem.
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The variation of kinetic energy is obtained using integration by parts and is given as

δT = −ρA
∫ l

0
(u,ttδu)ds, (5.46)

where l denotes the length of a portion of the 1D medium. Similarly, the variation of elastic

potential energy is written as

δU e =

∫ l

0

∫
A

(σδε)dAds, (5.47)

where σ is the longitudinal stress. We choose to base our analysis on the Cauchy stress and, as

mentioned earlier, model the stress-strain relationship by Hooke’s law, σ = Eε. Using Eq. (5.47),

and with the aid of integration by parts, we can now write the variation of elastic potential energy

as

δU e =

∫ l

0
{1

2
EAh(h2 − 1)δu′}ds, (5.48)

where u′ = du/ds = u,s, and h is an agent variable defined as

h = 1 + u′. (5.49)

Substitution of Eqs. (5.48) and (5.46) into Eq. (5.45), and assuming constant cross-sectional area,

produces the exact finite-strain equation of motion as

ρu,tt =
1

2
E(3h2 − 1)u′′. (5.50)

If the longitudinal deformation is infinitesimal, then u′ is small and from Eq. (5.49), h ≈ 1. Sub-

stitution of h = 1 into Eq. (5.50) leads to

ρu,tt = Eu′′, (5.51)

which is the equation of motion describing infinitesimal longitudinal deformation and is identical

to Eq. (5.2).
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5.3.1.2 Dispersion relation

Using Eq. (5.49), we rewrite Eq. (5.50) as

u,tt − c2u′′ =
1

2

[
c2[3(u′)2 + (u′)3]

]′
, (5.52)

which upon differentiation with respect to s gives

(u,tt)
′ − c2u(3) =

1

2

[
c2[3(u′)2 + (u′)3]

]′′
. (5.53)

Defining ū = u′ and z = |κ∗|s + ωt, where ω in this context represents the wave frequency under

finite strain, Eq. (5.53) becomes

ω2ū,zz − c2(κ∗)2ū,zz =
1

2
(κ∗)2

[
c2[3ū2 + ū3]

]
,zz
. (5.54)

Integrating Eq. (5.54) twice leads to

[ω2 − c2(κ∗)2]ū− c2(κ∗)2

2
[3ū2 + ū3] = 0, (5.55)

where the nonzero constants of integration (in the form of polynomials in z) represent secular terms

which we have set equal to zero in light of our interest in the dispersion relation. Selecting the

positive root of Eq. (5.55) we get

ū(z) =
−3 +

√
1 + 8ω2/c2(κ∗)2

2
. (5.56)

Since ū = u,s, we recognize that ū = |κ∗|u,z and therefore Eq. (5.56) represents a first-order ordinary

differential equation with z and u as the independent and dependent variables, respectively.

Now we return to Eq. (5.52) and consider for initial conditions a sinusoidal displacement field,

with amplitude B and a zero phase in time, and a zero velocity field. This represents a fundamental

harmonic signal for which we seek to characterize its dispersive behavior. In principle, any choice of

the initial velocity field is permitted. Following the change of variables that have been introduced,

these initial conditions correspond to the following restrictions at z = 0 on the ū(z) function given

in Eq. (5.56):

ū(0) = |κ∗|B, ū,z(0) = 0. (5.57)
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Figure 5.4: Frequency dispersion curves for a 1D homogeneous elastic medium [1]. The finite-strain
dispersion relation is based on Eq. (5.58); the infinitesimal strain dispersion relation is based on
Eq. (5.59).

These represent initial conditions in the wave phase, z, for Eq. (5.54) and allow for the introduction

of the wave amplitude, B, into the formulation. Applying Eq. (5.57) to Eq. (5.56) enables us to

use the latter to solve for ω for a given value of κ∗. This leads to the exact dispersion relation in

the form of

ω =

√
2 + 3B|κ∗|+(Bκ∗)2

2
c|κ∗|, (5.58)

which is a function of wavenumber and amplitude. We define this explicit finite-strain dispersion

relation by the function g, i.e., ωfin = g(κ∗;B), where ωfin denotes the frequency under finite-strain

conditions. By taking the limit, limB→0g(κ∗;B), we recover the standard linear dispersion relation

for a 1D homogeneous elastic medium or a thin rod [6], that is,

ω = c|κ∗|. (5.59)

We will denote the explicit dispersion relation under infinitesimal strain conditions by the function

h, i.e., ωinf = h(κ∗). It is noteworthy that for the type of nonlinearity considered, the finite-stratin

phase velocity, cp,fin, is larger than the infinitesimal strain phase velocity, cp,inf , and increases with
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amplitude:

cp,fin =
ωfin

|κ∗|
=

√
2 + 3B|κ∗|+(Bκ∗)2

2
c > c = cp,inf . (5.60)

In Fig. 5.4, a set of amplitude-dependent finite-strain dispersion curves evaluated by Eq. (5.58)

are shown. This figure demonstrates how the dispersion curve based on infinitesimal strain, i.e.,

Eq. (5.59), deviates with increasing wave amplitude under finite-strain. The reader is referred to

Ref. [ [1]] for a numerical validation of these results.

5.3.2 Finite-strain waves in a 1D elastic metamaterial

The TM method is now used to obtain a dispersion relation for the 1D MM when the base

rod is exhibiting finite-strain motion. The outcome is an approximate overall dispersion relation

since the construction of the transfer matrix is based on a linear strain-displacement relationship

[see Eq. (5.6)]. While not exact, this approach provides a quantitative prediction of the effect of

the nonlinearity on the location, size and character of the band gaps across the spectrum, all as a

function of wave amplitude. The technique’s accuracy reduces as the strength of the nonlinearity

increases.

As mentioned in Section 5.2.1, the TM method is applicable in either the absence or presence

of nonlinearity; the distinction is made in the definition of κ∗ in Eq. (5.5) and thereafter. For the

infinitesimal-strain problem, κ∗inf = ĥ(ω) = ω/c as outlined earlier in Eq. (5.21). An analogous

function for κ∗ can be found for the finite-strain problem, i.e., κ∗fin = ĝ(ω;B). To derive this

function, we recast Eq. (5.58) as the following fourth order characteristic equation for the bare

rod’s homogeneous medium in the unit cell:

κ∗4 +
3

B
κ∗3 +

2

B2
κ∗2 − 2ω2

B2c2
= 0. (5.61)

This equation has the following four solutions:

κ∗
1,2

=
1

12B
(−9 + P ∓

√
Q−R), (5.62a)

κ∗
3,4

= − 1

12B
(9 + P ±

√
Q+R), (5.62b)
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where,

P =

√
33cS + 12(S2 + 4c2 − 24B2ω2)

cS
, (5.63a)

Q =
6(−2S2 + 11cS − 8c2 + 48B2ω2)

cS
, (5.63b)

R = 54

√
3cS

4S2 + 11cS + 16c2 − 96B2ω2
, (5.63c)

and

S =

(
8c3 − 99cB2ω2 + 3Bω

√
−48c4 + 321c2B2ω2 + 1536B4ω4

) 1
3

. (5.63d)

We define κ∗fin = ĝ(ω;B) = max{κ∗n : n = 1, 2, 3, 4} and substitute it into the TM formalism of

Section 5.2.1. This generates the finite-strain dispersion curves of the 1D MM.

5.4 Analysis of nonlinear dispersion behavior

In this section, the dispersive behavior of the 1D MM is investigated using the theoretical

formulation developed above. First we define dimensionless values of mass, m′ = mπ/ρaA, stiffness

k′ = ka/EAπ, and wave amplitude B′ = Bπ/a and present, in Fig. 5.5, the finite-strain dispersion

curve (obtained using function ĝ) for the following parameters: a = 1, k′ = 1, m′ = 3 and

B′ = π/8 (corresponding to B/a = 1/8). Superimposed, for comparison, are the dispersion curves

on the basis of infinitesimal strain (obtained using function ĥ) and the corresponding dispersion

curves for an equivalent statically homogenized medium (for which the long-wave static speed is

equal to that of the 1D MM). We observe in the figure that the finite-strain dispersion curves

asymptotically converge to the infinitesimal-strain curves at long wavelengths as expected. We also

note that the finite strain causes the dispersion branches to rise and the band gap sizes to increase

significantly−an attractive trait for many applications involving sound and vibration control. This

behavior, however, is dependent on the type of nonlinearity considered as noted earlier.

In Fig. 5.6, we consider three examples, whereby the non-dimensional mass is m′ = 3, the

non-dimensional wave amplitude is B′ = 1/8, and the non-dimensional stiffness is chosen to be
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Figure 5.5: Frequency band structure for 1D MM under finite strain [obtained using Eqs. (5.13)
and (5.62)]. The results shown are for B/a = 1/8. For comparison, the dispersion curves under
infinitesimal strain are included. Also, corresponding dispersion curves for a statically equivalent
1D homogeneous elastic medium are overlaid.

k′ = 3.5, 3 and 2.5, respectively. Superimposed, for comparison, are the dispersion curves based on

infinitesimal strain. For all these cases, we observe the existence of Bragg-scattering band gaps as

well as a hybridized local-resonance band gap [62]. As the value of k′ decreases, the location of the

local-resonance band gap drops. Furthermore, in the case of infinitesimal strain, we observe that the
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Figure 5.6: Frequency band structure for 1D MM with properties of m′ = 3 and (a) k′ = 3.5, (b)
k′ = 3, and (c) k′ = 2.5. The results shown are for B′ = 1/8.
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constant nonlinearity (B′ = 1/8), and increasing resonator mass, (b) constant resonator mass
(m′ = 3), constant nonlinearity (B′ = 1/8), and increasing resonator stiffness, and (c) constant
resonator mass (m′ = 3), constant resonator stiffness (k′ = 3.5), and increasing nonlinearity. The
coalescence happens at m′ = 2.5099, k′ = 3.586, and B′ = .107275 for these cases, respectively, and
the corresponding curves are represented by dashed blue lines.

local-resonance band gap interacts with a lower Bragg-scattering band gap leading to a complete

coalescence at k′ = 3 and eventually by-passes it. The coalescence condition may be predicted

theoretically using Eq. (5.29), which in dimensionless parameters takes the form k′ = m′n2. In this

specific case, n = 1 and the coalescence forms when k′ = m′ = 3. In the case of finite strain, on the

other hand, we observe that a band-gap coalescence does not take place for the chosen values of k′.

In Fig. 5.7, we further demonstrate the significance of the nonlinearity in the context of the

effects of the resonator’s mass and stiffness on the band gaps. Increasing the mass of the resonator

transforms the opening mechanism of the first band gap from Bragg scattering to local resonance;

this takes effect due to the drop in the resonator’s frequency (Fig. 5.7a). Conversely, increasing

the stiffness of the resonator generates the opposite effect (Fig. 5.7b). The most intriguing case

is the one shown in Fig. 5.7c, where it can be seen that increasing the nonlinearity, while keeping

the resonator parameters constant, transforms the opening mechanism of the first band gap from
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stiffness, generated from Eq. (5.20), for the infinitesimal and finite strains, respectively. Finally,
the dashed orange and dash-dotted green curves represent the left hand side of Eqs. (5.25b) and
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Bragg scattering to local resonance. Exactly at the point of the transition, the first and the second

band gaps coalesce, as highlighted in the figure. Thus, large deformation alone may cause a pair

of isolated Bragg-scattering and local-resonance band gaps to coalesce to form a single wide band

gap.

In Fig. 5.8, we present a dimensionless band-gap diagram for both the infinitesimal- and

finite-strain models, using equations derived in Sections 5.2.1 and 5.2.2, for the corresponding cases

featured in Fig. 5.6. In this diagram, we plot the imaginary part of the dispersion relation from

Eq. (5.18) for the infinitesimal-strain (ω = ωinf) and the finite-strain (ω = ωfin) models, respectively.

We also superimpose the infinitesimal cotangent and tangent curves of Eqs. (5.25b) and (5.26b),

respectively, as well as the curves for the the infinitesimal (Vinf = V (ωinf)) and finite (Vfin = V (ωfin))

non-dimensional dynamic stiffnesses using Eq. (5.20). We observe that the intersection of the latter

set of curves does indeed provide exact predictions of the band-gap edges, for both the infinitesimal-
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Figure 5.9: Dependency of 1D MM band-gap attenuation and transition characteristics on the
resonator properties. Subfigures (a), (c) and (e) present the effect of varying m′ while keeping the
dimensionless stiffness fixed at k′ = 3. Subfigures (b), (d) and (f) present the effect of varying
k′ while keeping the dimensionless mass fixed at m′ = 3. The top row shows surface plots of the
imaginary part of the dispersion relation for finite strain and the middle row shows the same results
in the form of contour plots. The bottom row presents the curves for the frequencies of the band-
gap edges for the cases of infinitesimal and finite strains, as predicted using Eqs. (5.42) and (5.43)
as marked, as well as the band-gap edge frequencies (solid blue horizontal lines) corresponding to
the Bragg conditions given in Eq. (5.27). The association of each curve with either Mode A or
Mode B can be inferred from the marked equation numbers.
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and finite-strain models.

Further analysis of the location, size and character of band gaps is presented in Fig. 5.9. In

the top row of the figure, the imaginary part of the wavenumber for the finite-strain model is plotted

the dimensionless frequency Ω for varying m′ or k′ and for a fixed wave amplitude of B′ = 1/8.

The same set of results is shown in the middle row as contour plots. In the bottom row, the band-

gap edge curves are plotted for infinitesimal [k = k(ωinf), m = m(ωinf)] and finite [k = k(ωfin),

m = m(ωfin)] strains for both Mode A and Mode B, from Eqs. (5.42) and (5.43), respectively. The

band-gap edge curves plotted for the finite strain in the bottom row correspond to the boundaries

of the contour plots in the middle row. The blue horizontal lines in the bottom subfigures corre-

spond to the Bragg conditions of Eq. (5.27). The complete coalescence between a Bragg-scattering

band gap and a local-resonance band gap can be seen at the intersection points. As in Fig. 5.6,

the condition for this coalescence phenomenon can be obtained immediately. For example, for the

case of infinitesimal strain, the two coalescence conditions in Fig. 5.9e are m′ = k′/1 = 3 and

m′ = k′/4 = 0.75, respectively. And the coalescence condition in Fig. 5.9f is k′ = m′/1 = 3. We

note that Eq. (5.30) suggests that a higher wave speed in the host structure requires a higher tuned

local-resonance frequency to achieve complete coalescence. Here we recall that the wave speed

under finite strain is higher than under infinitesimal strain [see Eq. (5.60)]. As a result, for the

case of finite strain, the tuned local-resonance frequency to achieve complete coalescence must be

higher that the case of infinitesimal strain. In other words, if the other parameters are the same,

the resonator mass, m′, must be smaller (or the resonator stiffness, k′, must be larger) to achieve

coalescence when finite strain is accounted for, as observed in Fig. 5.9e Fig. 5.9f.

Finally we quantitatively examine the threshold beyond which the effect of nonlinearity on

the dispersion characteristics is no longer negligible. Investigating this limitation is particularly

important when linear theory is used to approximate the dynamical properties of nonlinear sys-

tems. Since we observe in the previous figures that the finite-strain dispersion curves begin their

deviation from the corresponding infinitesimal dispersion curves within the sub-Bragg-scattering

regime, this analysis has implications on the study of MMs with subwavelength band gaps.
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In Fig. 5.10a, we plot the frequency band structure for the 1D MM with a subwavelength

band-gap corresponding to approximately λ/15, where λ denotes the wavelength of the hybridiz-

ing wave. This condition is realized with m′ = 3 and k′ = 0.03. For different values of wave

amplitude-to-unit-cell ratio, B/a, we calculate the location along the wavenumber access at which

the finite-strain dispersion curve deviates by more than 5% from the corresponding infinitesimal-

strain dispersion curve. From this value, we calculate the maximum unit-cell size, amax, beyond

which the nonlinear effect is no longer negligible, and plot this quantity as a function of B/a in

Fig. 5.10b. This result can be used to determine whether the characteristics of a particular subwave-

length band gap may be approximated by linear theory without incurring a significant prediction

error.

5.5 Conclusions

We have provided an analytical formulation for the calculation of the dispersion curves of

a 1D locally resonant elastic metamaterial admitting finite-strain wave motion. We considered a
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uniform thin rod with a periodic array of spring-mass resonators. The effect of the nonlinearity has

been incorporated exactly at the bare rod level. Subsequently, the Transfer Matrix method has been

applied to the unit cell to provide an approximate dispersion relation for the 1D MM as a whole.

The approximation stems from the elimination of higher order strains in the TM method. However,

since band gaps in locally resonant MMs are commonly designed to fall within the subwavelength

regime, the results are relatively accurate especially for moderate values of wave amplitude.

Furthermore, we adopted the band-gap edge frequencies formulation of Xiao et al. [59] and

extended it to the finite-strain regime. The analysis also examined the nonlinear vibration charac-

teristics of equivalent finite structures.

In order to understand the effect of the nonlinearity on the band-gap formation behavior in

the 1D MM considered, we have investigated several systems with a variety of resonator parame-

ters. The results show that as the wave amplitude is increased, the location and size of the band

gaps change, and under certain conditions it is possible for the character of a band gap (i.e., Bragg

scattering versus hybridized local resonance) to change as well. Of particular interest is the obser-

vation that the nonlinearity alone could cause two band gaps, one of each character, to coalesce

and form a combined wide band gap.

Finally we have shown that the error incurred by assuming linear elastic wave propagation

theory increases rapidly as the wave amplitude is increased. We have provided a figure that deter-

mines the maximum unit-cell size permissible for a given wave amplitude beyond which ignoring

the effects of finite strain would incur an error exceeding 5%. As an example, for a wave amplitude

on the order of one-sixteenth of the unit cell size, the effect of the nonlinearity in the 1D MM

considered is no longer negligible when the unit-cell size is one-tenth of the wavelength or larger.
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Chapter 6

Summary and outlook

6.1 Summary of dissertation

This dissertation consists of two main parts; the first part investigates the effects of nonlin-

earities on the dispersion relation of a one-dimensional (1D) homogeneous medium when a large-

amplitude elastic wave propagates through it. The second part extends this analysis to a continuous

periodic thin rod - in one case a 1D phononic crystal constructed from several layers of different

materials in its unit cell, and in another case, a 1D elastic metamaterial with a periodically placed

local resonator.

Chapter 1 introduces the non-dispersive elastic wave equation and provides a few examples

of physical problems that are governed by this equation. Selected sources of dispersion in an elastic

solid medium are presented and common methods of treating them mathematically are introduced.

A nonlinear elastic wave with the nonlinearity introduced in the form of large deformation is derived.

Mathematical models for simplified periodic materials are formulated. A brief literature search is

provided allowing the current work to be put in context. The chapter concludes with the thesis

objectives and organization.

Chapter 2 starts by a brief derivation of a generalized form of the equation of motion incor-

porating a linear dispersive mechanism, lateral inertia, and two nonlinear dispersive mechanisms,

the Green-Lagrange and Hencky finite strain measures. For 1D elastic media, the exact amplitude-

dependent dispersion relations are derived without directly solving the governing equations. A

numerical tool, the Fourier spectral method, followed by wavenumber-frequency spectrum analysis,
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is developed to verify the analytical results. A brief formulation of this method can be found in

Appendix A. Results comparing the theory with the simulation are plotted and a novel correlation

between the nonlinear dispersion relation and the harmonic generation spectrum is established. It

has been shown that the response of the spectrum is strongly related to the harmonic generations,

establishing complete map connecting the space-time solution, the harmonic generations, and the

nonlinear dispersion relation of the system.

Chapter 3 follows the same concept described in chapter 2 but for small amplitudes and

through a perturbation method. This chapter formulates an expanded nonlinear dispersion relation

for a 1D elastic rod under Green-Lagrange and Hencky finite strains. Benefiting from the exact

nonlinear dispersion relations derived in chapter 2, the limitations of the perturbation theory are

quantitatively determined. The chapter also shows a derivation of the second order spatial solution

for the initial value problem introduced in chapter 2.

Chapter 4 discusses the theoretical treatment of elastic wave motion in a 1D elastic phononic

crystal consisting of layers with alternating material properties in the presence of finite strains.

The exact dispersion relation in each homogeneous layer is obtained and plugged into the familiar

transfer matrix method to predict an amplitude-dependent dispersion relation. The dispersion

relation that we obtain for the overall 1D phononic crystal represents an approximate solution. We

then verify the derived dispersion relation using brute-force space-time simulations followed by a

wave number-frequency spectrum analysis. The simulations are used to determine the upper limit

of wave amplitude per unit-cell length for which the theory is accurate, which turns out to be 0.125.

Finally, we use our formulation to investigate the effects of geometric nonlinearity on the elastic

band structure and Bloch mode shapes as a function of the wave amplitude and shed some light

on the possibility of balancing the linear and nonlinear contributions to the dispersion relation to

yield a spatially invariant wave profile.

Chapter 5 discusses the dispersion characteristics of a 1D elastic metamaterial under large

deformation. It starts with a TM method formulation which is slightly different that the one

presented in section 1.2.1. An explicit formulation for band-gap edge frequencies calculations is
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derived. A physical interpretation of the derived equation pertaining to the boundary conditions of

a corresponding finite structure is given. The band structure exhibiting large deformation effects

in a 1D elastic metamaterial is obtained and its behavior is analyzed.

In chapter 6, after a brief summery of the previous chapters, several directions for future

research are proposed. Some preliminary results from these possible research tracks, namely, gen-

eralization of the work presented in Chapter 2 considering a nonlinear constitutive law, is presented.

6.2 Future work

While the results in Chapter 2 are restricted to two forms of finite-strain measures, the

framework will be extended to include nonlinearities sourced from nonlinear constitutive laws.

Generalization of this framework allows us to study the effects of each dispersive mechanism indi-

vidually and collectively. This analysis framework will also be extended to 2D elastic waves and

other problems in applied physics that can be analyzed using the developed approach.

In the following we present a first step in generalizing the theoretical treatment of dispersive

elastic waves in a homogeneous medium considering a nonlinear constitutive law in the governing

equation. Similar to the derivations in Chapter 1, we can derive the equation of motion for a 1D

elastic media considering a nonlinear constitutive law, i.e., material nonlinearity. In this case, the

kinetic and strain energy densities are

T =
1

2
ρ(
∂u

∂t
)2, (6.1)

and

U =
1

2
E(
∂u

∂x
)2 +

1

2
Ē(
∂u

∂x
)3 +

1

2
¯̄E(
∂u

∂x
)4, (6.2)

where constitutive relation complies σ = Eε + Ēε2 + ¯̄Eε3. In this constitutive relation, Ē and ¯̄E

are corrective terms. Upon substitution of these densities in Hamilton’s principle, the equation of

motion is

∂2u

∂t2
= c2∂

2u

∂x2 +
1

2

∂

∂x
(3c̄2∂u

∂x

2

+ 4¯̄c2∂u

∂x

3

). (6.3)
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Here c̄ and ¯̄c denote higher order longitudinal velocities, defined by c̄ =
√
Ē/ρ and ¯̄c =

√
¯̄E/ρ.

Following the same steps introduced in the previous chapters, the amplitude-dependent dispersion

relation is

ω(κ;B) = cκ

√
1 +

3c̄2

2c2
Bκ+

2¯̄c2

c2
B2κ2. (6.4)

This framework can be extended to a 1D elastic medium with both linear and nonlinear disper-

sive mechanisms, e.g., lateral inertia and material nonlinearity or lateral inertia and geometric

nonlinearity.
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Appendix A

Supplemental material: Unified theory of nonlinear dispersion and harmonic

generation

A.1 Nondispersive wave WFS analysis

To verify the computational approach, we study the system at the limits of B → 0, r → 0 to

recover the linear dispersion relation ωinf = cκ from Eqs. (3) and (4). We set r = 0 and choose a

small amplitude in specific B = 0.0005 to avoid numerical instabilities in the numerical simulations.

The profile is defined the same as the one in Fig. (3). This condition generates a non-dispersive

wave in an almost non-dispersive medium, as it is shown in the top panels of Fig. A.1. The space-

time solution is shown in Fig. SA.1(a) followed by the WFS analysis results in Fig. SA.1(b) where

the spectrum perfectly falls along the infinitesimal dispersion relation.

A.2 Stability Analysis

The stability of nonlinear thin rod can be locally evaluated using eigenvalues of Eq. (A.1)

which is the equivalent first order system of Eq. (2) ignoring effects of lateral inertia,

∂ξū = v̄,

∂ξ v̄ =
κ2

ω2
∂ξξ(αū+ βN (ū)).

(A.1)

By analyzing this system, we find two distinct real eigenvalues, one negative, and one positive which

collide to each other on v̄ = 0. The positive eigenvalue indicates that the system is unstable and
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solutions are in the form of breaking waves.

A.3 Computational method: Fourier spectral method

We simulate the propagation of Eq. (1) using a spectral method for the spatial variable in

conjunction with an efficient explicit time stepping method. The nonlinear PDEs are discretized

with the discrete Fourier transform (DFT) in space and marched in time using a numerical inte-

gration scheme. We consider ū as a discrete function on N -point spatial grid xj , j = 1, . . . , N .

The DFT is defined by ûk = h
∑

j e−ikxj ūj , for k = −N/2 + 1, ..., N/2, and the inverse discrete

Fourier transform (IDFT) by ūj = 1
2π

∑
k eikxj ûk, for each point. Here, h = 2π/N , xj = jh, h is

the spacing of the grid points, and k is the Fourier wave numbers. We apply ∂tū = v̄ followed by

(b)
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B = .0005, r = 0 B = .0005, r = 0
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Figure A.1: (color). Wave propagation and its corresponding WFS analyses (GLS measure at left
and HS measure at right columns).(a) Infinitesimal strain space-time solution. Here we have used
B = 0.0005 and κe = 6 to form the initial wave profile. (b) The WFS analysis of the infinitesimal
strain space-time solution represented by the logarithmic spectrum S. Corresponding dispersion
curves from Eqs. (3) and (4) are overlaid as solid lines. Time and space units are [ms] and [m],
respectively.
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the DFT on Eq. (1) to form the corresponding first order system

∂t

 û

v̂

 =

 0 0

− αk2

1+γk2
0


 û

v̂

+

 v̂

− βk2

1+γk2
F(N )

 , (A.2)

where F(.) denotes the Fourier transform of the considered function. Differentiating the transfor-

mation [ũ, ṽ]T = Γ [û, v̂]T with respect to time, with Γ = [I, 0;αk2∆t, I] being the integral factor

of Eq. (A.2), followed by the substitution of the ∂tû and ∂tv̂ values from Eq. (A.2) and û and v̂

from the inverse transformation [û, v̂]T = Γ−1 [ũ, ṽ]T, produces the following numerically integrable

system,

∂tũ = − αk2∆t

1 + γk2
ũ+ ṽ,

∂tṽ =
αk2∆t

1 + γk2
(− αk2∆t

1 + γk2
ũ+ ṽ)− βk2

1 + γk2
F(N ).

(A.3)

We use the fourth-order explicit Runge-Kutta time stepping scheme to integrate Eq. (A.3). Then

the inverse transformation is applied followed by IDFT on [ũ, ṽ]T to obtain ū(x, t). Now that we

have the space-time solution, we expand the concept of Fourier analysis to the spatio-temporal

wave-field data ūp,q, p = 0, 1, ..., N − 1, q = 0, 1, ..., T − 1 by sl,n = 1
NT

∑
p

∑
q e−2πi(lp/N+nq/T )ūp,q,

for l = 0, 1, ..., N and n = 0, 1, ..., T defining T as the number of time steps, to reveal the wave

number-frequency spectrum s(κ, ω) [20,133].
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Appendix B

Nonlinear dispersion verification by the finite-element method

A finite element method is used to simulate the wave propagation in elastic media under

finite deformation. The following formulation is presented for the Green-Lagrange strain measure,

but it can be reformulated for any other strain measure. The governing equation of un-damped

free vibration is

Mü + f = 0. (B.1)

In order to capture the effect of large deformation in 1D, a two-node element with length l, consisting

of the following 4 degrees of freedom (DOF) is defined

ue = [ux1, θz1, ux2, θz2]T . (B.2)

We derive the mass matrix through a variational formulation by taking the kinetic energy as

part of the governing functional. The kinetic energy of an element of mass density ρ and velocity

field u̇e is

T e =
1

2
ρA

∫
(u̇e)T u̇edx. (B.3)

The element velocity field is interpolated using shape functions defined by

Ne =

[
1

l3
(2x+ l)(x− l)2,

1

l2
x(x− l)2,− 1

l3
x2(2x− 3l),

1

l2
x2(x− l)

]
, (B.4)

as u̇e(x) = due(x)/dt = Neu̇e. Substituting Eq. (B.4) into Eq. (B.3) and taking the node velocities

out of the integral gives

T e =
1

2
ρAu̇e

T

∫
(Ne)TNedxu̇e. (B.5)
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The mass matrix is derived from the Hessian of T e

M =
∂2T

∂u̇e∂u̇e
=

1

2
ρA

∫
(Ne)TNedx. (B.6)

If in the in static equilibrium, the internal forces, p, balance the external forces, f , the residual

forces r = p−f becomes zero. The internal force vector can be obtained by taking the first variation

of the internal energy with respect to the node displacements as

f = p =
∂U e

∂ue
, (B.7)

in which U e is the internal energy and is defined by

U e =
1

2
A

∫
σεdx. (B.8)

We introduce the Green-Lagrange strain as

ε = ux +
1

2
ux

2 = Bue +
1

2
(Bue)2, (B.9)

where B is the deformation matrix and upon substitution in Eq. (B.8) we get

U e =
1

2
AE(u̇e

T

∫
BTBdxue + u̇e

T

∫
BTBBdxue2 + u̇e

T2
∫

1

4
BTBBTBdxue

2
). (B.10)

The internal force vector becomes

f =
1

2
AE(

∫
BTBdxue + u̇e

T

∫
BTBdx+

∫
BTBBdxue

2
+

u̇e
T

∫
BTBBdxue + u̇e

T

∫
1

2
BTBBTBdxue

2
+ u̇e

T2
∫

1

2
BTBBTBdxue). (B.11)

Now that the mass matrix and the force vector are formed we can integrate Eq. (B.1) by any

integration method and find the displacement field and its gradient at every point in time.
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